期刊文献+
共找到1,633篇文章
< 1 2 82 >
每页显示 20 50 100
Bayesian-based ant colony optimization algorithm for edge detection
1
作者 YU Yongbin ZHONG Yuanjingyang +6 位作者 FENG Xiao WANG Xiangxiang FAVOUR Ekong ZHOU Chen CHENG Man WANG Hao WANG Jingya 《Journal of Systems Engineering and Electronics》 2025年第4期892-902,共11页
Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of t... Ant colony optimization(ACO)is a random search algorithm based on probability calculation.However,the uninformed search strategy has a slow convergence speed.The Bayesian algorithm uses the historical information of the searched point to determine the next search point during the search process,reducing the uncertainty in the random search process.Due to the ability of the Bayesian algorithm to reduce uncertainty,a Bayesian ACO algorithm is proposed in this paper to increase the convergence speed of the conventional ACO algorithm for image edge detection.In addition,this paper has the following two innovations on the basis of the classical algorithm,one of which is to add random perturbations after completing the pheromone update.The second is the use of adaptive pheromone heuristics.Experimental results illustrate that the proposed Bayesian ACO algorithm has faster convergence and higher precision and recall than the traditional ant colony algorithm,due to the improvement of the pheromone utilization rate.Moreover,Bayesian ACO algorithm outperforms the other comparative methods in edge detection task. 展开更多
关键词 ant colony optimization(ACO) Bayesian algorithm edge detection transfer function.
在线阅读 下载PDF
Improved ant colony optimization algorithm for the traveling salesman problems 被引量:22
2
作者 Rongwei Gan Qingshun Guo +1 位作者 Huiyou Chang Yang Yi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第2期329-333,共5页
Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is amo... Ant colony optimization (ACO) is a new heuristic algo- rithm which has been proven a successful technique and applied to a number of combinatorial optimization problems. The traveling salesman problem (TSP) is among the most important combinato- rial problems. An ACO algorithm based on scout characteristic is proposed for solving the stagnation behavior and premature con- vergence problem of the basic ACO algorithm on TSP. The main idea is to partition artificial ants into two groups: scout ants and common ants. The common ants work according to the search manner of basic ant colony algorithm, but scout ants have some differences from common ants, they calculate each route's muta- tion probability of the current optimal solution using path evaluation model and search around the optimal solution according to the mutation probability. Simulation on TSP shows that the improved algorithm has high efficiency and robustness. 展开更多
关键词 ant colony optimization heuristic algorithm scout ants path evaluation model traveling salesman problem.
在线阅读 下载PDF
Ant colony optimization algorithm and its application to Neuro-Fuzzy controller design 被引量:11
3
作者 Zhao Baojiang Li Shiyong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第3期603-610,共8页
An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and s... An adaptive ant colony algorithm is proposed based on dynamically adjusting the strategy of updating trail information. The algorithm can keep good balance between accelerating convergence and averting precocity and stagnation. The results of function optimization show that the algorithm has good searching ability and high convergence speed. The algorithm is employed to design a neuro-fuzzy controller for real-time control of an inverted pendulum. In order to avoid the combinatorial explosion of fuzzy rules due tσ multivariable inputs, a state variable synthesis scheme is employed to reduce the number of fuzzy rules greatly. The simulation results show that the designed controller can control the inverted pendulum successfully. 展开更多
关键词 neuro-fuzzy controller ant colony algorithm function optimization genetic algorithm inverted pen-dulum system.
在线阅读 下载PDF
Solving algorithm for TA optimization model based on ACO-SA 被引量:4
4
作者 Jun Wang Xiaoguang Gao Yongwen Zhu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期628-639,共12页
An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missi... An ant colony optimization (ACO)-simulated annealing (SA)-based algorithm is developed for the target assignment problem (TAP) in the air defense (AD) command and control (C2) system of surface to air missile (SAM) tactical unit. The accomplishment process of target assignment (TA) task is analyzed. A firing advantage degree (FAD) concept of fire unit (FU) intercepting targets is put forward and its evaluation model is established by using a linear weighted synthetic method. A TA optimization model is presented and its solving algorithms are designed respectively based on ACO and SA. A hybrid optimization strategy is presented and developed synthesizing the merits of ACO and SA. The simulation examples show that the model and algorithms can meet the solving requirement of TAP in AD combat. 展开更多
关键词 target assignment (TA) optimization ant colony optimization (ACO) algorithm simulated annealing (SA) algorithm hybrid optimization strategy.
在线阅读 下载PDF
Efficiency improvement of ant colony optimization in solving the moderate LTSP 被引量:1
5
作者 Munan Li 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1301-1309,共9页
In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and sa... In solving small- to medium-scale travelling salesman problems (TSPs) of both symmetric and asymmetric types, the traditional ant colony optimization (ACO) algorithm could work well, providing high accuracy and satisfactory efficiency. However, when the scale of the TSP increases, ACO, a heuristic algorithm, is greatly challenged with respect to accuracy and efficiency. A novel pheromone-trail updating strategy that moderately reduces the iteration time required in real optimization problem-solving is proposed. In comparison with the traditional strategy of the ACO in several experiments, the proposed strategy shows advantages in performance. Therefore, this strategy of pheromone-trail updating is proposed as a valuable approach that reduces the time-complexity and increases its efficiency with less iteration time in real optimization applications. Moreover, this strategy is especially applicable in solving the moderate large-scale TSPs based on ACO. 展开更多
关键词 ant colony optimization (ACO) travelling salesmanproblem (TSP) time-complexity of algorithm pheromone-trail up-dating.
在线阅读 下载PDF
Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm 被引量:15
6
作者 ZHANG Dong-Li TANG Ying-Gan GUAN Xin-Ping 《自动化学报》 EI CSCD 北大核心 2014年第5期973-980,共8页
关键词 PID控制器 优化设计 VR系统 群算法 分数阶 工蜂 自动电压调节器 搜索范围
在线阅读 下载PDF
Improved multi-objective artificial bee colony algorithm for optimal power flow problem 被引量:1
7
作者 马连博 胡琨元 +1 位作者 朱云龙 陈瀚宁 《Journal of Central South University》 SCIE EI CAS 2014年第11期4220-4227,共8页
The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting obj... The artificial bee colony(ABC) algorithm is improved to construct a hybrid multi-objective ABC algorithm, called HMOABC, for resolving optimal power flow(OPF) problem by simultaneously optimizing three conflicting objectives of OPF, instead of transforming multi-objective functions into a single objective function. The main idea of HMOABC is to extend original ABC algorithm to multi-objective and cooperative mode by combining the Pareto dominance and divide-and-conquer approach. HMOABC is then used in the 30-bus IEEE test system for solving the OPF problem considering the cost, loss, and emission impacts. The simulation results show that the HMOABC is superior to other algorithms in terms of optimization accuracy and computation robustness. 展开更多
关键词 cooperative artificial colony algorithm optimal power flow multi-objective optimization
在线阅读 下载PDF
Weapon target assignment problem satisfying expected damage probabilities based on ant colony algorithm 被引量:26
8
作者 Wang Yanxia Qian Longjun Guo Zhi Ma Lifeng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期939-944,共6页
A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the we... A weapon target assignment (WTA) model satisfying expected damage probabilities with an ant colony algorithm is proposed. In order to save armament resource and attack the targets effectively, the strategy of the weapon assignment is that the target with greater threat degree has higher priority to be intercepted. The effect of this WTA model is not maximizing the damage probability but satisfying the whole assignment result. Ant colony algorithm has been successfully used in many fields, especially in combination optimization. The ant colony algorithm for this WTA problem is described by analyzing path selection, pheromone update, and tabu table update. The effectiveness of the model and the algorithm is demonstrated with an example. 展开更多
关键词 weapon target assignment ant colony algorithm optimization.
在线阅读 下载PDF
Improved artificial bee colony algorithm with mutual learning 被引量:7
9
作者 Yu Liu Xiaoxi Ling +1 位作者 Yu Liang Guanghao Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2012年第2期265-275,共11页
The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs ... The recently invented artificial bee colony (ABC) al- gorithm is an optimization algorithm based on swarm intelligence that has been used to solve many kinds of numerical function optimization problems. It performs well in most cases, however, there still exists an insufficiency in the ABC algorithm that ignores the fitness of related pairs of individuals in the mechanism of find- ing a neighboring food source. This paper presents an improved ABC algorithm with mutual learning (MutualABC) that adjusts the produced candidate food source with the higher fitness between two individuals selected by a mutual learning factor. The perfor- mance of the improved MutualABC algorithm is tested on a set of benchmark functions and compared with the basic ABC algo- rithm and some classical versions of improved ABC algorithms. The experimental results show that the MutualABC algorithm with appropriate parameters outperforms other ABC algorithms in most experiments. 展开更多
关键词 artificial bee colony (ABC) algorithm numerical func- tion optimization swarm intelligence mutual learning.
在线阅读 下载PDF
Research of Rural Power Network Reactive Power Optimization Based on Improved ACOA
10
作者 YU Qian ZHAO Yulin WANG Xintao 《Journal of Northeast Agricultural University(English Edition)》 CAS 2010年第3期48-52,共5页
In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this stud... In view of the serious reactive power loss in the rural network, improved ant colony optimization algorithm (ACOA) was used to optimize the reactive power compensation for the rural distribution system. In this study, the traditional ACOA was improved in two aspects: one was the local search strategy, and the other was pheromone mutation and re-initialization strategies. The reactive power optimization for a county's distribution network showed that the improved ACOA was practicable. 展开更多
关键词 rural power network reactive power optimization ant colony optimization algorithm local search strategy pheromone mutation and re-initialization strategy
在线阅读 下载PDF
基于粒子群和蜂群算法的无人机路径规划 被引量:4
11
作者 刘晓芬 吴传淑 +1 位作者 张紫瑞 陈珏先 《兵工自动化》 北大核心 2025年第4期107-112,共6页
针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径... 针对无人机在有威胁战场环境下的2维和3维路径规划问题,提出一种基于粒子群(particleswarm optimization,PSO)和人工蜂群(artificialbeecolony,ABC)混合算法。根据B样条可以修改局部飞行轨迹的特点,引入非均匀B样条曲线优化拐点处的路径,使得到的路径更加平滑,无人机机动转弯相对更少。结果表明:该研究提高了无人机飞行的安全性和高效性,便于无人机的飞行控制跟踪实现。 展开更多
关键词 路径规划 B样条 粒子群算法 人工蜂群算法 飞行控制
在线阅读 下载PDF
基于阻塞栅格地图的煤矿救援机器人路径规划 被引量:1
12
作者 邵小强 刘明乾 +3 位作者 马博 李浩 吕植越 韩泽辉 《煤炭科学技术》 北大核心 2025年第7期249-261,共13页
针对矿难发生后,煤矿救援机器人面对井下复杂环境使用路径规划算法耗时太长,路径规划过程中产生冗余点过多且易陷入死锁的问题,提出一种基于类型匹配的栅格地图阻塞算法,该算法可通过迭代阻塞以减少栅格地图中无需探索的可通行节点数量... 针对矿难发生后,煤矿救援机器人面对井下复杂环境使用路径规划算法耗时太长,路径规划过程中产生冗余点过多且易陷入死锁的问题,提出一种基于类型匹配的栅格地图阻塞算法,该算法可通过迭代阻塞以减少栅格地图中无需探索的可通行节点数量。算法的阻塞过程利用定义的栅格节点和其邻节点构成的3×3子图类型与栅格地图进行匹配。首先根据路径规划算法的寻路特点定义可阻塞栅格类型和不可阻塞栅格类型;然后按照各种类型特征进行建模,为每种类型设置权重和偏置;最后将各类型子图与初始栅格地图通过二维卷积操作进行匹配以阻塞无需拓展节点,在使用基于栅格地图的路径规划算法之前对输入栅格地图进行阻塞处理。阻塞节点不会断开原始栅格地图中存在最小成本路径。结果表明:该算法可应用于各种栅格环境地图中,在真实煤矿井下栅格地图环境下,与单独使用路径规划算法相比,使用本文算法结合A*算法与仅使用A*算法相比,该算法结合A*算法路径规划总时间减少60.0%,拓展节点数量减少60.4%;结合蚁群算法与仅使用蚁群算法相比,该算法结合蚁群算法路径规划总时间减少55.8%,迭代次数减少53.7%。所提算法极大缩小了路径规划时间,解决了路径规划死锁问题,在复杂环境地图中优势明显,保证事故救援的及时性。 展开更多
关键词 煤矿救援机器人 栅格地图 阻塞栅格地图 A*算法 蚁群算法
在线阅读 下载PDF
基于ARIMA与GGACO算法的ETL任务调度机制研究
13
作者 周金治 刘艺涵 吴斌 《控制工程》 北大核心 2025年第2期208-215,共8页
随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任... 随着抽取-转换-加载(extraction-transformation-loading,ETL)系统的ETL任务量增多,任务复杂度和波动性也随之提升,现有的ETL任务调度机制难以满足调度需求,如时间片轮转法受限于弹性调度能力弱、效率低下等缺点。为研究如何提升ETL任务调度机制的弹性调度能力以及执行效率,提出了一种基于整合移动平均自回归(autoregressive integrated moving average,ARIMA)模型与贪心-遗传-蚁群优化(greedy-genetic-ant colony optimization,GGACO)算法的ETL任务调度机制。初期,建立ARIMA模型并弹性地结合贪心算法计算初始解;中期,利用遗传算法的全局快收敛的特性结合初始解圈定最优解的大致范围;最后,利用蚁群优化算法的局部快速收敛性进行最优解搜索。实验结果表明:该调度机制能够弹性地指导任务调度尽可能地找到最优解,减少任务的执行时间,以及尽可能实现更高效的负载均衡。 展开更多
关键词 弹性调度 ARIMA 贪心算法 遗传算法 蚁群优化算法
在线阅读 下载PDF
双机器人的任务分配和协同作业算法研究
14
作者 李铁军 赵博言 +2 位作者 刘今越 贾晓辉 唐春瑞 《控制工程》 北大核心 2025年第4期577-585,共9页
针对双机器人难以实现合理的任务分配和协同作业的问题,提出了一种基于工作量平衡机制与主从协同蚁群优化算法完成双机器人的任务分配和协同作业的方法。首先,基于任务点集合建立不平衡任务指派模型,任务分配阶段通过迭代路径规划算法... 针对双机器人难以实现合理的任务分配和协同作业的问题,提出了一种基于工作量平衡机制与主从协同蚁群优化算法完成双机器人的任务分配和协同作业的方法。首先,基于任务点集合建立不平衡任务指派模型,任务分配阶段通过迭代路径规划算法平衡两机器人的工作量。然后,通过主从协同蚁群优化算法解算机器人之间避免干涉且保持工作量最小的多目标协同作业优化模型。最后,结合钢筋绑扎场景展开实验,实验结果表明,所提方法可以在两机器人之间实现合理的任务分配,减少二者的工作差异量,使其高效地完成钢筋绑扎作业,并且可以有效避免机器人在作业过程中发生干涉。 展开更多
关键词 双机器人 任务分配 主从协同 蚁群优化算法
在线阅读 下载PDF
k-center问题的算法研究综述
15
作者 王晓峰 华盈盈 +2 位作者 王军霞 彭庆媛 何飞 《郑州大学学报(工学版)》 CAS 北大核心 2025年第1期42-50,97,共10页
k-center问题是设施选址的基础问题,同样是NP难问题,在分配、紧急服务等领域也有着实际的应用。随着问题规模的扩大,原有的算法已不再适用,需要进一步优化或者改进。为了找到求解该问题的高效算法,对现有算法进行研究。对各类求解k-cen... k-center问题是设施选址的基础问题,同样是NP难问题,在分配、紧急服务等领域也有着实际的应用。随着问题规模的扩大,原有的算法已不再适用,需要进一步优化或者改进。为了找到求解该问题的高效算法,对现有算法进行研究。对各类求解k-center问题的算法进行梳理,将求解算法划分为精确算法、启发式算法、元启发式算法、近似算法等,从算法原理、改进思路、性能和精度等方面进行对比综述。精确算法在求解小规模k-center问题时可在多项式时间内得到最优解,但是算法效率低,不适用于大规模问题;启发式算法可以在多项式时间内给出相对最优解,但是没有理论保证,无法衡量与最优解的关系;元启发式算法可对目前存在的智能优化算法进行改进,给出相对最优解,但是解的质量无法保证;利用近似算法得到的解具有近似比保证,有较大的理论研究价值,但是实用价值较弱。目前求解k-center问题的元启发式算法已取得一定的研究成果,但是在求解时间、求解规模、算法效率等方面仍待突破,这将是未来k-center问题的研究重点。 展开更多
关键词 k-center问题 精确算法 近似算法 蜂群优化 遗传算法
在线阅读 下载PDF
考虑飞机除冰任务的除冰车路径规划模型研究
16
作者 徐一旻 王台玉冰 +2 位作者 吕伟 刘鸣秋 吴佳莉 《中国安全生产科学技术》 北大核心 2025年第8期181-188,共8页
为应对冻雨天气下机场除冰作业中车辆调度效率低、动态避障能力不足及多约束条件耦合优化困难等问题,提出1种基于混合蚁群算法的机场除冰车辆路径规划与动态调度优化模型。首先通过栅格化建模技术,将机场CAD地图转化为离散网格空间,综... 为应对冻雨天气下机场除冰作业中车辆调度效率低、动态避障能力不足及多约束条件耦合优化困难等问题,提出1种基于混合蚁群算法的机场除冰车辆路径规划与动态调度优化模型。首先通过栅格化建模技术,将机场CAD地图转化为离散网格空间,综合考虑障碍物动态分布、航班起飞优先级、除冰液有效时间窗、车辆容量限制等约束,构建多目标优化函数。其次,基于混合蚁群算法的全局寻优能力与A^(*)算法的局部路径优化特性,实现复杂环境下路径规划与避障的协同控制。实验基于真实机场脱敏地图构建仿真场景,划分20个区域并标注所有停机位坐标,验证了模型的有效性和鲁棒性。研究结果表明:该模型在确保航班时刻表约束的前提下,总行驶距离减少68%,航班延误时间减少90%,有效规避障碍物膨胀区边界的同时能动态调整多车辆协作路径。研究结果可为冻雨天气下机场除冰作业提供兼顾全局最优性与动态适应性的解决方案。 展开更多
关键词 路径规划 机场除冰车辆 动态调度 混合蚁群算法 多目标优化
在线阅读 下载PDF
1060铝板渐进成形参数的精英群体引导蜂群优化
17
作者 陈建丽 曾德长 《机械设计与制造》 北大核心 2025年第8期186-191,共6页
为了减小1060铝合金板多道次渐进成形制件的最大减薄率和厚度偏差,提出了基于精英群体引导蜂群算法的渐进成形工艺参数优化方法。建立了直臂筒形件单点渐进成形的有限元模型;构造了以减小最大减薄率和厚度偏差为目标的优化模型;选择了... 为了减小1060铝合金板多道次渐进成形制件的最大减薄率和厚度偏差,提出了基于精英群体引导蜂群算法的渐进成形工艺参数优化方法。建立了直臂筒形件单点渐进成形的有限元模型;构造了以减小最大减薄率和厚度偏差为目标的优化模型;选择了对性能参数敏感性较强的工艺参数作为优化对象,基于最优拉丁超立方抽样法在优化空间抽取了采样点,并基于有限元模型获取了相应的性能参数;在蜂群算法中引入了精英群体引导策略,提出了基于精英群体引导蜂群算法的参数优化方法。经验证,精英群体引导蜂群算法搜索的结果优于传统蜂群算法和正交蜂群算法搜索的结果;将精英群体引导蜂群算法的优化结果进行有限元和生产验证,试制件无明显外观缺陷;经测量,试制件最大减薄率、厚度标准差以优化结果为中心进行小范围波动,且明显小于工厂产品的最大减薄率和厚度标准差,验证了精英群体引导蜂群算法在参数优化中的优越性和生产的稳定性。 展开更多
关键词 渐进成形 1060铝合金板 蜂群算法 精英群体 参数优化
在线阅读 下载PDF
考虑双资源约束多转速的绿色柔性作业车间调度研究
18
作者 王玉芳 章殿清 +2 位作者 华晓麟 张毅 葛师语 《控制理论与应用》 北大核心 2025年第10期2019-2027,共9页
考虑实际生产车间机器不同转速产生能耗差异及精工序的生产需求,构建以最大完工时间和机器总能耗为优化目标的双资源约束多转速绿色柔性作业车间调度模型,并提出一种动态学习人工蜂群算法进行求解.采用混合初始化获取初始种群,提升算法... 考虑实际生产车间机器不同转速产生能耗差异及精工序的生产需求,构建以最大完工时间和机器总能耗为优化目标的双资源约束多转速绿色柔性作业车间调度模型,并提出一种动态学习人工蜂群算法进行求解.采用混合初始化获取初始种群,提升算法的进化起点.在雇佣蜂完成搜索之后,引入新蜂种学习蜂,学习优秀蜜源的基因,降低搜索的随机性,提高搜索精度,并采用Q学习算子对学习概率进行自适应优化,保证蜜源多样性的同时加强算法的全局搜索能力.跟随蜂阶段设计一种动态邻域搜索策略,加入基于变速及平衡工人工作时长的邻域结构,提高跟随蜂的局部搜索能力.通过不同算法对拓展算例的对比验证所提算法的优越性. 展开更多
关键词 双资源约束 多转速 绿色柔性车间调度 多目标优化 人工蜂群算法 Q学习
在线阅读 下载PDF
车载无人机物资配送路径优化
19
作者 黄迎春 李开源 《火力与指挥控制》 北大核心 2025年第8期31-37,共7页
采用无人机配送物资在商业和军事上均有广阔的应用前景。针对配送过程中末端配送效率低等问题,提出一种车辆携带多架无人机的配送方案,以最小服务时间为优化目标构造最优化模型,求解模型时采用改进的K-means聚类算法对配送点进行分类,... 采用无人机配送物资在商业和军事上均有广阔的应用前景。针对配送过程中末端配送效率低等问题,提出一种车辆携带多架无人机的配送方案,以最小服务时间为优化目标构造最优化模型,求解模型时采用改进的K-means聚类算法对配送点进行分类,将聚类中心作为货车配送点;然后以车辆路径问题为基础设计蚁群拟算法求解一车携带多架无人机形式的配送路线。通过采用标准数据集进行实验,实验结果表明改进后算法在路径优化能力和求解精确性方面都有较好的性能。 展开更多
关键词 综合运输 聚类算法 蚁群算法 路径优化
在线阅读 下载PDF
基于改进蚁群算法与冰霜-势场法的AGV路径规划
20
作者 李学艺 莫凡 +2 位作者 葛淑磊 吴宗坤 杨通 《组合机床与自动化加工技术》 北大核心 2025年第7期66-72,共7页
针对生产车间中自动导引车(automated guided vehicle,AGV)在路径规划时难以兼顾全局最优与局部最优的问题,提出了一种基于改进蚁群算法和冰霜-势场法的路径规划方法。改进后的蚁群算法可以高效地规划AGV运行的全局路径;提出的冰霜-势... 针对生产车间中自动导引车(automated guided vehicle,AGV)在路径规划时难以兼顾全局最优与局部最优的问题,提出了一种基于改进蚁群算法和冰霜-势场法的路径规划方法。改进后的蚁群算法可以高效地规划AGV运行的全局路径;提出的冰霜-势场法可以使AGV在避让障碍物的同时缩短局部路径的长度。仿真实验证明,相较于传统蚁群算法及其变体,改进的蚁群算法规划的路径长度短5.71%且收敛速度更快;以轴加工车间为例通过仿真表明,相较于D*算法与传统人工势场法,所提出的路径规划方法兼顾路径的全局最优与局部最优,且路径长度缩短6.3%以上。 展开更多
关键词 路径规划 AGV 蚁群算法 冰霜优化
在线阅读 下载PDF
上一页 1 2 82 下一页 到第
使用帮助 返回顶部