针对智慧医疗场景中高密度无线体域网(wireless body area network,WBAN)多优先级数据传输与计算资源受限的挑战,研究提出一种融合动态优先级评估与量子优化的任务卸载策略。首先通过构建医疗物联网(healthcare Internet of Things,H-I...针对智慧医疗场景中高密度无线体域网(wireless body area network,WBAN)多优先级数据传输与计算资源受限的挑战,研究提出一种融合动态优先级评估与量子优化的任务卸载策略。首先通过构建医疗物联网(healthcare Internet of Things,H-IoT)高密度WBAN网络模型,集成任务优先级分层机制与动态信道状态感知模块,建立基于生理数据特征的通信质量评估体系。其次设计多维动态调度框架,利用生理参数偏离度、数据滞留时间及抢占事件等指标实时调整任务优先级权重,结合抢占式调度策略保障急诊数据的低时延传输。再进一步改进量子遗传算法(improved quantum genetic algorithm,IQGA),采用动态量子旋转门角度调整机制优化局部搜索性能,并引入灾变修正函数提升全局收敛效率。仿真实验表明,该策略在任务平均处理时间、系统能耗、高优先级任务时延及收敛速度方面分别实现71.51%、88.21%、89.63%和78.74%的性能优化,系统综合收益提升达114.43%。研究成果为高密度医疗物联网场景下的实时任务调度与资源分配提供了理论支撑与技术路径。展开更多
研究单转运系统分布式置换流水线调度问题,任一工厂内连续两台机器间有一台运输能力有限的转运机器人。基于此,提出一种多策略融合改进遗传算法以最小化最大完工时间。引入Logistic-tent混沌搜索、基于K-均值聚类的NEH算法和修正NEH算...研究单转运系统分布式置换流水线调度问题,任一工厂内连续两台机器间有一台运输能力有限的转运机器人。基于此,提出一种多策略融合改进遗传算法以最小化最大完工时间。引入Logistic-tent混沌搜索、基于K-均值聚类的NEH算法和修正NEH算法以改善初始工厂加工序列群的质量,运用结合均匀多点交叉和互换变异的自适应交叉变异算子或工厂内/间交叉变异算子进行解的调整,设计一种基于主工厂的邻域搜索(key-factory-based local search,KFLS)和半初始化策略进行再次优化。仿真结果表明了该算法的有效性。展开更多
针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式...针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式进行染色体编码;采用精英保留策略选择优异个体,改进遗传算法的交叉、变异操作,用改进后的遗传算法求解混流装配线调度问题。通过对比案例及实例数据计算结果验证了方案的有效性。展开更多
文摘针对智慧医疗场景中高密度无线体域网(wireless body area network,WBAN)多优先级数据传输与计算资源受限的挑战,研究提出一种融合动态优先级评估与量子优化的任务卸载策略。首先通过构建医疗物联网(healthcare Internet of Things,H-IoT)高密度WBAN网络模型,集成任务优先级分层机制与动态信道状态感知模块,建立基于生理数据特征的通信质量评估体系。其次设计多维动态调度框架,利用生理参数偏离度、数据滞留时间及抢占事件等指标实时调整任务优先级权重,结合抢占式调度策略保障急诊数据的低时延传输。再进一步改进量子遗传算法(improved quantum genetic algorithm,IQGA),采用动态量子旋转门角度调整机制优化局部搜索性能,并引入灾变修正函数提升全局收敛效率。仿真实验表明,该策略在任务平均处理时间、系统能耗、高优先级任务时延及收敛速度方面分别实现71.51%、88.21%、89.63%和78.74%的性能优化,系统综合收益提升达114.43%。研究成果为高密度医疗物联网场景下的实时任务调度与资源分配提供了理论支撑与技术路径。
文摘研究单转运系统分布式置换流水线调度问题,任一工厂内连续两台机器间有一台运输能力有限的转运机器人。基于此,提出一种多策略融合改进遗传算法以最小化最大完工时间。引入Logistic-tent混沌搜索、基于K-均值聚类的NEH算法和修正NEH算法以改善初始工厂加工序列群的质量,运用结合均匀多点交叉和互换变异的自适应交叉变异算子或工厂内/间交叉变异算子进行解的调整,设计一种基于主工厂的邻域搜索(key-factory-based local search,KFLS)和半初始化策略进行再次优化。仿真结果表明了该算法的有效性。
文摘针对混流装配线工序加工资源需求多样、工艺复杂、装配工期长等问题,采用Petri网和改进遗传算法对该问题进行优化求解。建立混流装配线赋时库所Petri网(timed place Petri net, TPPN)调度模型,基于模型激发序列,采用基于工序的编码方式进行染色体编码;采用精英保留策略选择优异个体,改进遗传算法的交叉、变异操作,用改进后的遗传算法求解混流装配线调度问题。通过对比案例及实例数据计算结果验证了方案的有效性。