期刊文献+
共找到16,881篇文章
< 1 2 250 >
每页显示 20 50 100
基于PSO-GA模型的供水管网漏损预测研究
1
作者 彭燕莉 刘俊红 +2 位作者 陶修斌 覃佳肖 朱雅 《沈阳建筑大学学报(自然科学版)》 北大核心 2025年第1期121-129,共9页
准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某... 准确、有效地定位供水管网中漏损位置,减少水资源浪费和降低检漏成本。基于EPANET软件构建供水管网水力模型,采用粒子群算法和遗传算法相结合方法对管网漏损预测模型进行优化求解、验证,以实现管网漏损定位和漏损程度判定;以西南地区某城镇的供水管网为例,分别对单点和多点(2处及以上)漏损工况进行模拟评估。提出的供水管网漏损预测模型在单点漏损工况下,预测漏损量与实际漏损量的平均绝对百分比误差εmape小于3%,多点漏损量的εmape值均小于5.22%,且模拟定位节点与实际漏损点的拓扑距离绝大部分稳定在2以内。基于PSO-GA的漏损预测模型可有效地实现漏损定位与漏损程度的同步检测,并识别出多个近似节点,为检漏工作提供技术参考。 展开更多
关键词 供水管网 PSO-ga算法 漏损定位 EPANET
在线阅读 下载PDF
基于GA-RELM多特征优选的烟叶多部位正反面识别方法
2
作者 陈婷 赵晓琳 +5 位作者 张冀武 盖小雷 张晓伟 刘宇晨 王燕 龙杰 《湖南农业大学学报(自然科学版)》 北大核心 2025年第1期113-122,共10页
针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构... 针对现有烟叶分级模型多基于平整烟叶的正面特征构建,分级模型准确率和实用性较低的问题,提出一种基于遗传算法-正则化极限学习机(GA-RELM)多特征优选的烟叶多部位正反面识别方法。首先,对自然状态下的烟叶进行多尺度正反面特征提取,构建正反面数据集,根据特征重要性和特征间的潜在关系,实现特征降维并构建新特征组合。其次,对正则化极限学习机(RELM)进行隐藏层偏置寻优,以提高模型实际应用性和分类精度。结果表明:与原极限学习机(ELM)相比,GA-RELM对自然状态下的烟叶正反面和多部位正反面的分类精度分别提高了0.84%和7.88%,运算时间分别减少2.56 s和5.72 s;与其他烟叶分级算法相比,GA-RELM在准确率、精确率、召回率、F1评分等多个指标上表现出明显优势。 展开更多
关键词 烤烟 烟叶分级 多特征优选 遗传算法 正则化极限学习机
在线阅读 下载PDF
基于GA-LSTM的桥梁缆索腐蚀钢丝力学性能预测模型
3
作者 缪长青 吕悦凯 万春风 《东南大学学报(自然科学版)》 北大核心 2025年第1期140-145,共6页
为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经... 为了精准捕捉桥梁缆索腐蚀钢丝的时变规律并预测其力学性能,开发了一种基于遗传算法(genetic algorithm, GA)优化的长短期记忆(long short-term memory, LSTM)神经网络模型。该模型利用GA依次优化LSTM模型的迭代次数、隐藏层层数、神经元数量、窗口大小4个超参数,以预测不同腐蚀特征状态下钢丝的力学性能。将其与传统LSTM和GA-反向传播模型的预测结果进行比较。结果表明,GA-LSTM模型具有更高的预测精度和鲁棒性。在屈服强度与极限强度预测效果方面,均方根误差(root mean square error, RMSE)、平均绝对误差(mean absolute error, MAE)、决定系数分别提高约44%~61%、43%~57%、35%~92%。在屈服应变与极限应变预测效果方面,RMSE、MAE、决定系数分别提高约0~46%、7%~49%、12%~229%。所建立的模型可以作为一个有用的工具支持桥梁缆索腐蚀安全性评估工作。 展开更多
关键词 桥梁缆索腐蚀钢丝 力学性能预测 时序预测 神经网络 遗传算法 超参数优化
在线阅读 下载PDF
Genetic algorithm assisted meta-atom design for high-performance metasurface optics 被引量:1
4
作者 Zhenjie Yu Moxin Li +9 位作者 Zhenyu Xing Hao Gao Zeyang Liu Shiliang Pu Hui Mao Hong Cai Qiang Ma Wenqi Ren Jiang Zhu Cheng Zhang 《Opto-Electronic Science》 2024年第9期15-28,共14页
Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves... Metasurfaces,composed of planar arrays of intricately designed meta-atom structures,possess remarkable capabilities in controlling electromagnetic waves in various ways.A critical aspect of metasurface design involves selecting suitable meta-atoms to achieve target functionalities such as phase retardation,amplitude modulation,and polarization conversion.Conventional design processes often involve extensive parameter sweeping,a laborious and computationally intensive task heavily reliant on designer expertise and judgement.Here,we present an efficient genetic algorithm assisted meta-atom optimization method for high-performance metasurface optics,which is compatible to both single-and multiobjective device design tasks.We first employ the method for a single-objective design task and implement a high-efficiency Pancharatnam-Berry phase based metalens with an average focusing efficiency exceeding 80%in the visible spectrum.We then employ the method for a dual-objective metasurface design task and construct an efficient spin-multiplexed structural beam generator.The device is capable of generating zeroth-order and first-order Bessel beams respectively under right-handed and left-handed circular polarized illumination,with associated generation efficiencies surpassing 88%.Finally,we implement a wavelength and spin co-multiplexed four-channel metahologram capable of projecting two spin-multiplexed holographic images under each operational wavelength,with efficiencies over 50%.Our work offers a streamlined and easy-to-implement approach to meta-atom design and optimization,empowering designers to create diverse high-performance and multifunctional metasurface optics. 展开更多
关键词 metasurface metalens Bessel beam metahologram genetic algorithm
在线阅读 下载PDF
基于GA-LQR的高速列车横向振动主动控制方法研究
5
作者 赵德生 霍有志 《高速铁路技术》 2025年第1期49-54,62,共7页
本文针对随机轨道不规则激励造成高速列车车体横向振动问题,提出一种基于GA-LQR算法和二系悬架系统的主动控制方法,通过抑制车体的横向振动提高高速列车的运行平稳性和安全性。首先,考虑随机轨道不规则激励并建立车辆-轨道系统动力学模... 本文针对随机轨道不规则激励造成高速列车车体横向振动问题,提出一种基于GA-LQR算法和二系悬架系统的主动控制方法,通过抑制车体的横向振动提高高速列车的运行平稳性和安全性。首先,考虑随机轨道不规则激励并建立车辆-轨道系统动力学模型;其次,针对LQR控制器设计时权重矩阵Q和R较难选择的问题,采用GA算法迭代优化得到最优权矩阵和控制器;最后,通过模拟仿真进一步验证所提方法的有效性。结果表明,所提出的基于GA-LQR算法和二系悬架系统的主动控制方法,具有抑制列车车体横向振动的有效潜力,与被动悬架方法相比,该方法有效地将车体横向振动振幅降低68.47%,显著提升了乘坐舒适性和高速列车运行的稳定性。 展开更多
关键词 高速列车 横向振动 主动控制 线性二次型调节器 遗传算法
在线阅读 下载PDF
Design of artificial neural networks using a genetic algorithm to predict saturates of vacuum gas oil 被引量:15
6
作者 Dong Xiucheng Wang Shouchun +1 位作者 Sun Renjin Zhao Suoqi 《Petroleum Science》 SCIE CAS CSCD 2010年第1期118-122,共5页
Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a... Accurate prediction of chemical composition of vacuum gas oil (VGO) is essential for the routine operation of refineries. In this work, a new approach for auto-design of artificial neural networks (ANN) based on a genetic algorithm (GA) is developed for predicting VGO saturates. The number of neurons in the hidden layer, the momentum and the learning rates are determined by using the genetic algorithm. The inputs for the artificial neural networks model are five physical properties, namely, average boiling point, density, molecular weight, viscosity and refractive index. It is verified that the genetic algorithm could find the optimal structural parameters and training parameters of ANN. In addition, an artificial neural networks model based on a genetic algorithm was tested and the results indicated that the VGO saturates can be efficiently predicted. Compared with conventional artificial neural networks models, this approach can improve the prediction accuracy. 展开更多
关键词 Saturates vacuum gas oil PREDICTION artificial neural networks genetic algorithm
在线阅读 下载PDF
GA-BP模型在HSS模型参数取值中的应用
7
作者 张杰 马杰 +2 位作者 陈啸海 钟鹏 王营营 《城市道桥与防洪》 2025年第1期229-235,共7页
小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小... 小应变硬化土(HSS)模型可以有效反映土的压缩硬化特性和小应变特性,非常适合黄土基坑的数值模拟计算。但是,HSS模型包含了11个硬化土(HS)模型参数和2个小应变参数,而这2个小应变参数往往需要采用试验方法确定,获取过程复杂。为了探讨小应变参数的预测方法,采用经过遗传算法优化的BP神经网络模型,即GA-BP神经网络模型,首先根据预设的小应变参数水平经过数值模拟计算得到49组位移数据,然后将得到的数据用于GA-BP神经网络的训练,待GA-BP神经网络的预测误差达到要求之后,再使用实际的位移数据反演得到小应变参数,最后基于预测得到的小应变参数进行数值模拟。结果显示,GA-BP神经网络模型预测的小应变参数在基坑围护结构最大水平位移和地表最大沉降计算方面表现良好,可以应用于实际工程。 展开更多
关键词 岩土工程 遗传算法 HSS模型 BP神经网络 小应变参数 参数反演
在线阅读 下载PDF
GA-iForest: An Efficient Isolated Forest Framework Based on Genetic Algorithm for Numerical Data Outlier Detection 被引量:4
8
作者 LI Kexin LI Jing +3 位作者 LIU Shuji LI Zhao BO Jue LIU Biqi 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2019年第6期1026-1038,共13页
With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorith... With the development of data age,data quality has become one of the problems that people pay much attention to.As a field of data mining,outlier detection is related to the quality of data.The isolated forest algorithm is one of the more prominent numerical data outlier detection algorithms in recent years.In the process of constructing the isolation tree by the isolated forest algorithm,as the isolation tree is continuously generated,the difference of isolation trees will gradually decrease or even no difference,which will result in the waste of memory and reduced efficiency of outlier detection.And in the constructed isolation trees,some isolation trees cannot detect outlier.In this paper,an improved iForest-based method GA-iForest is proposed.This method optimizes the isolated forest by selecting some better isolation trees according to the detection accuracy and the difference of isolation trees,thereby reducing some duplicate,similar and poor detection isolation trees and improving the accuracy and stability of outlier detection.In the experiment,Ubuntu system and Spark platform are used to build the experiment environment.The outlier datasets provided by ODDS are used as test.According to indicators such as the accuracy,recall rate,ROC curves,AUC and execution time,the performance of the proposed method is evaluated.Experimental results show that the proposed method can not only improve the accuracy and stability of outlier detection,but also reduce the number of isolation trees by 20%-40%compared with the original iForest method. 展开更多
关键词 outlier detection isolation tree isolated forest genetic algorithm feature selection
在线阅读 下载PDF
GENETIC ALGORITHMS AND GAME THEORY FOR HIGH LIFT DESIGN PROBLEMS IN AERODYNAMICS 被引量:7
9
作者 PériauxJacques WangJiangfeng WuYizhao 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2002年第1期7-13,共7页
A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timiz... A multi-objective evolutionary optimization method (combining genetic algorithms(GAs)and game theory(GT))is presented for high lift multi-airfoil systems in aerospace engineering.Due to large dimension global op-timization problems and the increasing importance of low cost distributed parallel environments,it is a natural idea to replace a globar optimization by decentralized local sub-optimizations using GT which introduces the notion of games associated to an optimization problem.The GT/GAs combined optimization method is used for recon-struction and optimization problems by high lift multi-air-foil desing.Numerical results are favorably compared with single global GAs.The method shows teh promising robustness and efficient parallel properties of coupled GAs with different game scenarios for future advanced multi-disciplinary aerospace techmologies. 展开更多
关键词 gaME theory genetic algorithms multi-ob-jective aerodynamic optimization 基因算法 博奕论 气动优化 翼型
在线阅读 下载PDF
Topological optimization of ballistic protective structures through genetic algorithms in a vulnerability-driven environment
10
作者 Salvatore Annunziata Luca Lomazzi +1 位作者 Marco Giglio Andrea Manes 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期125-137,共13页
Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulne... Reducing the vulnerability of a platform,i.e.,the risk of being affected by hostile objects,is of paramount importance in the design process of vehicles,especially aircraft.A simple and effective way to decrease vulnerability is to introduce protective structures to intercept and possibly stop threats.However,this type of solution can lead to a significant increase in weight,affecting the performance of the aircraft.For this reason,it is crucial to study possible solutions that allow reducing the vulnerability of the aircraft while containing the increase in structural weight.One possible strategy is to optimize the topology of protective solutions to find the optimal balance between vulnerability and the weight of the added structures.Among the many optimization techniques available in the literature for this purpose,multiobjective genetic algorithms stand out as promising tools.In this context,this work proposes the use of a in-house software for vulnerability calculation to guide the process of topology optimization through multi-objective genetic algorithms,aiming to simultaneously minimize the weight of protective structures and vulnerability.In addition to the use of the in-house software,which itself represents a novelty in the field of topology optimization of structures,the method incorporates a custom mutation function within the genetic algorithm,specifically developed using a graph-based approach to ensure the continuity of the generated structures.The tool developed for this work is capable of generating protections with optimized layouts considering two different types of impacting objects,namely bullets and fragments from detonating objects.The software outputs a set of non-dominated solutions describing different topologies that the user can choose from. 展开更多
关键词 Topological optimization Protective structure genetic algorithm SURVIVABILITY VULNERABILITY
在线阅读 下载PDF
Optimized parameters of downhole all-metal PDM based on genetic algorithm
11
作者 Jia-Xing Lu Ling-Rong Kong +2 位作者 Yu Wang Chao Feng Yu-Lin Gao 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2663-2676,共14页
Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,... Currently,deep drilling operates under extreme conditions of high temperature and high pressure,demanding more from subterranean power motors.The all-metal positive displacement motor,known for its robust performance,is a critical choice for such drilling.The dimensions of the PDM are crucial for its performance output.To enhance this,optimization of the motor's profile using a genetic algorithm has been undertaken.The design process begins with the computation of the initial stator and rotor curves based on the equations for a screw cycloid.These curves are then refined using the least squares method for a precise fit.Following this,the PDM's mathematical model is optimized,and motor friction is assessed.The genetic algorithm process involves encoding variations and managing crossovers to optimize objective functions,including the isometric radius coefficient,eccentricity distance parameter,overflow area,and maximum slip speed.This optimization yields the ideal profile parameters that enhance the motor's output.Comparative analyses of the initial and optimized output characteristics were conducted,focusing on the effects of the isometric radius coefficient and overflow area on the motor's performance.Results indicate that the optimized motor's overflow area increased by 6.9%,while its rotational speed reduced by 6.58%.The torque,as tested by Infocus,saw substantial improvements of38.8%.This optimization provides a theoretical foundation for improving the output characteristics of allmetal PDMs and supports the ongoing development and research of PDM technology. 展开更多
关键词 Positive displacement motor genetic algorithm Profile optimization Matlab programming Overflow area
在线阅读 下载PDF
Optimization of magnetic field design for Hall thrusters based on a genetic algorithm
12
作者 谭睿 杭观荣 王平阳 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期82-92,共11页
Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall er... Magnetic field design is essential for the operation of Hall thrusters.This study focuses on utilizing a genetic algorithm to optimize the magnetic field configuration of SPT70.A 2D hybrid PIC-DSMC and channel-wall erosion model are employed to analyze the plume divergence angle and wall erosion rate,while a Farady probe measurement and laser profilometry system are set up to verify the simulation results.The results demonstrate that the genetic algorithm contributes to reducing the divergence angle of the thruster plumes and alleviating the impact of high-energy particles on the discharge channel wall,reducing the erosion by 5.5%and 2.7%,respectively.Further analysis indicates that the change from a divergent magnetic field to a convergent magnetic field,combined with the upstream shift of the ionization region,contributes to the improving the operation of the Hall thruster. 展开更多
关键词 magnetic field design genetic algorithm divergence angle erosion of discharge channel convergent magnetic field
在线阅读 下载PDF
基于IABC-GA的管路协同机舱设备布局优化方法研究
13
作者 王文双 杨远松 +2 位作者 刘海洋 杨明君 林焰 《大连理工大学学报》 CAS 北大核心 2025年第1期67-78,共12页
为解决船舶机舱整体布局优化设计问题,提出一种基于改进人工蜂群遗传算法(IABC-GA)的管路协同设备布局优化设计方法以获得最佳设备布局方案和管路布局方案.在人工蜂群算法和遗传算法的基础上,提出一种既适应设备布局优化也适应管路路径... 为解决船舶机舱整体布局优化设计问题,提出一种基于改进人工蜂群遗传算法(IABC-GA)的管路协同设备布局优化设计方法以获得最佳设备布局方案和管路布局方案.在人工蜂群算法和遗传算法的基础上,提出一种既适应设备布局优化也适应管路路径寻优的改进算法,结合协同进化思想,将船舶机舱整体布局优化问题拆解为互相关联的设备布局问题和管路布局问题,两者在相互影响的情况下协同进化,最终得到最佳的船舶机舱布局设计方案.通过对实船机舱的仿真实验,验证了管路协同设备布局优化方法的可行性与可靠性.设备布局方面,与原始设备布局相比效果提升59.5%;船舶机舱整体布局方面,与先进行设备布局优化再进行管路布局优化相比效果提升11.8%. 展开更多
关键词 改进人工蜂群遗传算法(IABC-ga) 船舶机舱 设备布局优化 协同进化
在线阅读 下载PDF
基于ANN-GA协同寻优的大跨度双曲桁架拱钢闸门结构优化设计
14
作者 王皓臣 张燎军 +3 位作者 张汉云 章寰宇 林润丰 宋琰 《水电能源科学》 北大核心 2025年第1期145-149,共5页
针对大跨度双曲桁架拱钢闸门结构的优化设计,采用拉丁超立方随机抽样方法建立试验抽样点,通过对抽样点的训练建立人工神经网络(ANN)预测模型;同时协同遗传算法(GA)的全局搜索能力,基于ANN模型构造相应的适应度函数,提出了一种ANN-GA协... 针对大跨度双曲桁架拱钢闸门结构的优化设计,采用拉丁超立方随机抽样方法建立试验抽样点,通过对抽样点的训练建立人工神经网络(ANN)预测模型;同时协同遗传算法(GA)的全局搜索能力,基于ANN模型构造相应的适应度函数,提出了一种ANN-GA协同优化的结构优化模型,并对某拟建60 m大跨度双曲桁架拱钢闸门关键构件进行结构优化设计。结果表明,ANN模型可有效应用于结构尺寸与闸门总质量及最大折算应力的非线性建模,训练后的ANN-GA模型可根据结构尺寸准确预测该结构尺寸下所对应的闸门总质量及最大应力值;通过建立基于ANN模型构建的适应度函数,GA可实现在ANN模型预测的基础上快速全局寻优并快速收敛,基于ANN-GA的协同优化方法对于闸门结构尺寸优化切实有效。研究成果可为闸门结构优化设计提供参考。 展开更多
关键词 钢闸门 结构优化设计 人工神经网络 遗传算法
在线阅读 下载PDF
基于GA-Fuzzy-PID算法的棉田施肥灌溉系统研究
15
作者 王昊 张立新 +2 位作者 胡雪 李文春 王晓瑛 《农机化研究》 北大核心 2025年第4期50-56,64,共8页
在水肥一体控制器中,PID控制算法易引起超调,产生振荡;Fuzzy-PID控制算法由于参数基于人为经验设定,控制欠细腻。针对上述问题,研究并设计了一种基于GA-Fuzzy-PID算法的控制器,以期实现施肥灌溉系统的精准控制。在不同目标EC设定值下,对... 在水肥一体控制器中,PID控制算法易引起超调,产生振荡;Fuzzy-PID控制算法由于参数基于人为经验设定,控制欠细腻。针对上述问题,研究并设计了一种基于GA-Fuzzy-PID算法的控制器,以期实现施肥灌溉系统的精准控制。在不同目标EC设定值下,对PID算法、Fuzzy-PID算法和GA-Fuzzy-PID算法进行仿真对比。结果表明:基于GA-Fuzzy-PID的控制器具有优异的控制效果,更能满足施肥灌溉系统精准控制的要求。 展开更多
关键词 棉田 灌溉施肥 精准控制 遗传优化 ga-Fuzzy-PID
在线阅读 下载PDF
Self-Organizing Genetic Algorithm Based Method for Constructing Bayesian Networks from Databases
16
作者 郑建军 刘玉树 陈立潮 《Journal of Beijing Institute of Technology》 EI CAS 2003年第1期23-27,共5页
The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learn... The typical characteristic of the topology of Bayesian networks (BNs) is the interdependence among different nodes (variables), which makes it impossible to optimize one variable independently of others, and the learning of BNs structures by general genetic algorithms is liable to converge to local extremum. To resolve efficiently this problem, a self-organizing genetic algorithm (SGA) based method for constructing BNs from databases is presented. This method makes use of a self-organizing mechanism to develop a genetic algorithm that extended the crossover operator from one to two, providing mutual competition between them, even adjusting the numbers of parents in recombination (crossover/recomposition) schemes. With the K2 algorithm, this method also optimizes the genetic operators, and utilizes adequately the domain knowledge. As a result, with this method it is able to find a global optimum of the topology of BNs, avoiding premature convergence to local extremum. The experimental results proved to be and the convergence of the SGA was discussed. 展开更多
关键词 Bayesian networks structure learning from databases self-organizing genetic algorithm
在线阅读 下载PDF
Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
17
作者 陆静远 崔春凤 +4 位作者 欧阳滔 李金 何朝宇 唐超 钟建新 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第4期109-117,共9页
The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive... The gamma-graphyne nanoribbons(γ-GYNRs) incorporating diamond-shaped segment(DSSs) with excellent thermoelectric properties are systematically investigated by combining nonequilibrium Green’s functions with adaptive genetic algorithm. Our calculations show that the adaptive genetic algorithm is efficient and accurate in the process of identifying structures with excellent thermoelectric performance. In multiple rounds, an average of 476 candidates(only 2.88% of all16512 candidate structures) are calculated to obtain the structures with extremely high thermoelectric conversion efficiency.The room temperature thermoelectric figure of merit(ZT) of the optimal γ-GYNR incorporating DSSs is 1.622, which is about 5.4 times higher than that of pristine γ-GYNR(length 23.693 nm and width 2.660 nm). The significant improvement of thermoelectric performance of the optimal γ-GYNR is mainly attributed to the maximum balance of inhibition of thermal conductance(proactive effect) and reduction of thermal power factor(side effect). Moreover, through exploration of the main variables affecting the genetic algorithm, it is revealed that the efficiency of the genetic algorithm can be improved by optimizing the initial population gene pool, selecting a higher individual retention rate and a lower mutation rate. The results presented in this paper validate the effectiveness of genetic algorithm in accelerating the exploration of γ-GYNRs with high thermoelectric conversion efficiency, and could provide a new development solution for carbon-based thermoelectric materials. 展开更多
关键词 adaptive genetic algorithm thermoelectric material diamond-like quantum dots gamma-graphyne nanoribbon
在线阅读 下载PDF
OTPA结合NSGA-Ⅱ算法的产品包装系统优化设计
18
作者 陆怡宇 张元标 +1 位作者 杨松平 聂楚昕 《振动与冲击》 北大核心 2025年第1期102-112,共11页
利用工况传递路径分析(operational transfer path analysis,OTPA)方法分析随机振动不同激励谱型、不同振动等级下产品包装系统的振动传递特性,结合非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)进行包装系... 利用工况传递路径分析(operational transfer path analysis,OTPA)方法分析随机振动不同激励谱型、不同振动等级下产品包装系统的振动传递特性,结合非支配排序遗传算法(non-dominated sorting genetic algorithm-Ⅱ,NSGA-Ⅱ)进行包装系统优化设计。试验结果表明:产品关键元件实测振动加速度响应曲线与OTPA方法合成的加速度响应曲线吻合良好,验证了OTPA方法的正确性;通过OTPA方法量化各传递路径的振动贡献量,对比识别出产品包装系统的主要振动传递路径;保持非主要传递路径的缓冲衬垫材料不变,应用NSGA-Ⅱ算法优化产品包装件系统中主要振动传递路径处的缓冲衬垫分配,有效降低了关键元件的加速度响应,减少在振动过程中的能量聚集,促使各传递路径的振动贡献量趋于均衡。实现了以缓冲性能为主导,同时兼顾环保性能与成本的包装系统优化设计,验证了优化方法的有效性,为产品包装系统设计提供参考。 展开更多
关键词 随机振动 工况传递路径分析(OTPA) 振动贡献量 非支配排序遗传算法(NSga-Ⅱ) 减振优化
在线阅读 下载PDF
基于GA-BP神经网络岩石单轴抗压强度预测模型研究
19
作者 张奥宇 杨科 +1 位作者 池小楼 张杰 《煤》 2025年第1期6-10,17,共6页
为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-B... 为探究更为精确的上覆岩层砂岩和泥岩单轴抗压强度与其弹性模量之间的关联性,结合胡家河矿56组砂岩和泥岩单轴抗压强度与弹性模量历史数据,运用遗传算法优化了BP神经网络的结构参数和学习参数,得到了最佳的网络结构和参数设置,利用GA-BP神经网络对煤矿砂岩与泥岩单轴抗压强度进行了预测,并与传统的BP神经网络和非线性回归分析法进行了比较。研究结果表明,GA-BP神经网络预测模型在预测砂岩和泥岩单轴抗压强度与弹性模量间关系上具有较高的精度和泛化能力,能够有效地解决传统BP神经网络的局部最优和过拟合问题,相较于非线性回归分析,拥有更强的非线性关系建模能力,是一种适用于砂岩与泥岩单轴抗压强度预测的有效方法。 展开更多
关键词 岩石力学参数 非线性回归 BP神经网络 遗传算法 预测模型
在线阅读 下载PDF
基于混合NSGA-Ⅱ算法的机场车辆调度研究
20
作者 刘青 刘晓疆 +3 位作者 李福聪 于灏 王健 袁婷 《信息技术》 2025年第1期80-84,93,共6页
针对机场保障车辆资源调度问题,现有的人工调度方式存在时间成本较高、资源运行效率较低的问题,该研究探索了一种混合NSGA-Ⅱ算法。该算法结合了邻域搜索和NSGA-Ⅱ算法,旨在实现任务数量均衡性和最小车辆行驶距离这两个目标,以求解车辆... 针对机场保障车辆资源调度问题,现有的人工调度方式存在时间成本较高、资源运行效率较低的问题,该研究探索了一种混合NSGA-Ⅱ算法。该算法结合了邻域搜索和NSGA-Ⅱ算法,旨在实现任务数量均衡性和最小车辆行驶距离这两个目标,以求解车辆调度模型。通过对国内某机场实际航班数据进行仿真实验,结果表明,该研究所提出的算法模型能够有效解决机场保障车辆的调度问题。 展开更多
关键词 邻域搜索 NSga-Ⅱ 遗传算法 车辆调度 多目标优化
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部