期刊文献+
共找到72,674篇文章
< 1 2 250 >
每页显示 20 50 100
PM_(2.5) probabilistic forecasting system based on graph generative network with graph U-nets architecture
1
作者 LI Yan-fei YANG Rui +1 位作者 DUAN Zhu LIU Hui 《Journal of Central South University》 2025年第1期304-318,共15页
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ... Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction. 展开更多
关键词 PM_(2.5)interval forecasting graph generative network graph U-Nets sparse Bayesian regression kernel density estimation spatial-temporal characteristics
在线阅读 下载PDF
An improved model of the Pasternak foundation beam umbrella arch considering the generalized shear force
2
作者 CHEN Lei JIA Chao-jun +3 位作者 LEI Ming-feng HE Yan-chun SHI Cheng-hua LI Ao 《Journal of Central South University》 2025年第4期1503-1519,共17页
The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequ... The existing analytical models for umbrella arch method(UAM)based on elastic foundation beams often overlook the influence of the surrounding soil beyond the beam edges on the shear stresses acting on the beam.Consequently,such models fail to adequately reflect the continuity characteristics of soil deformation.Leveraging the Pasternak foundation-Euler beam model,this study considers the generalized shear force on the beam to account for the influence of soil outside the beam ends on the shear stress.An analytical model for the deformation and internal forces of finite-length beams subjected to arbitrary loads is derived based on the initial parameter method under various conditions.The mechanical model of the elastic foundation beam for advanced umbrella arch under typical tunnel excavation cycles is established,yielding analytical solutions for the longitudinal response of the umbrella arch.The reliability of the analytical model is verified with the existing test data.The improved model addresses anomalies in existing models,such as abnormal upward deformation in the loosened segment and maximum deflection occurring within the soil mass.Additionally,dimensionless characteristic parameters reflecting the relative stiffness between the umbrella arch structure and the foundation soil are proposed.Results indicate that the magnitude of soil characteristic parameters significantly influences the deformation and internal forces of the umbrella arch.Within common ranges of soil values,the maximum deformation and internal forces of the umbrella arch under semi-logarithmic coordinates exhibit nearly linear decay with decreasing soil characteristic parameters.The impact of tunnel excavation height on the stress of unsupported sections of the umbrella arch is minor,but it is more significant for umbrella arch buried within the soil mass.Conversely,the influence of tunnel excavation advance on the umbrella arch is opposite. 展开更多
关键词 elastic foundation beam Pasternak foundation generalized shear umbrella arch analytical model
在线阅读 下载PDF
Generalized multiple-mode prolate spheroidal wave functions multi-carrier waveform with index modulation
3
作者 XU Zhichao LU Faping +5 位作者 ZHANG Lifan YANG Dongkai LIU Chuanhui KANG Jiafang AN Qi ZHANG Zhilin 《Journal of Systems Engineering and Electronics》 2025年第2期311-322,共12页
A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The p... A generalized multiple-mode prolate spherical wave functions (PSWFs) multi-carrier with index modulation approach is proposed with the purpose of improving the spectral efficiency of PSWFs multi-carrier systems. The proposed method,based on the optimized multi-index modulation, does not limit the number of signals in the first and second constellations and abandons the concept of limiting the number of signals in different constellations. It successfully increases the spectrum efficiency of the system while expanding the number of modulation symbol combinations and the index dimension of PSWFs signals. The proposed method outperforms the PSWFs multi-carrier index modulation method based on optimized multiple indexes in terms of spectrum efficiency, but at the expense of system computational complexity and bit error performance. For example, with n=10 subcarriers and a bit error rate of 1×10^(-5),spectral efficiency can be raised by roughly 12.4%. 展开更多
关键词 prolate spherical wave function(PSWF) generalized multiple-mode index modulation spectral efficiency.
在线阅读 下载PDF
Research on extraction and reproduction of deformation camouflage spot based on generative adversarial network model 被引量:5
4
作者 Xin Yang Wei-dong Xu +4 位作者 Qi Jia Ling Li Wan-nian Zhu Ji-yao Tian Hao Xu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期555-563,共9页
The method of describing deformation camouflage spots based on feature space has some shortcomings,such as inaccurate description and difficult reproduction.Depending on the strong fitting ability of the generative ad... The method of describing deformation camouflage spots based on feature space has some shortcomings,such as inaccurate description and difficult reproduction.Depending on the strong fitting ability of the generative adversarial network model,the distribution of deformation camouflage spot pattern can be directly fitted,thus simplifying the process of spot extraction and reproduction.The requirements of background spot extraction are analyzed theoretically.The calculation formula of limiting the range of image spot pixels is given and two kinds of spot data sets,forestland and snowfield,are established.Spot feature is decomposed into shape,size and color features,and a GAN(Generative Adversarial Network)framework is established.The effects of different loss functions on network training results are analyzed in the experiment.In the meantime,when the input dimension of generator network is 128,the balance between sample diversity and quality can be achieved.The effects of sample generation are investigated in two aspects.Subjectively,the probability of the generated spots being distinguished in the background is counted,and the results are all less than 20% and mostly close to zero.Objectively,the features of the spot shape are calculated and the independent sample T-test is applied to verify that the features are from the same distribution,and all the P-Values are much higher than 0.05.Both subjective and objective methods prove that the spots generated by this method are similar to the background spots.The proposed method can directly generate the desired camouflage pattern spots,which provides a new technical method for the deformation camouflage pattern design and camouflage effect evaluation. 展开更多
关键词 Deformation camouflage generative adversarial network Spot feature Shape description
在线阅读 下载PDF
Ballistic response of armour plates using Generative Adversarial Networks 被引量:1
5
作者 S.Thompson F.Teixeira-Dias +1 位作者 M.Paulino A.Hamilton 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第9期1513-1522,共10页
It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-ba... It is important to understand how ballistic materials respond to impact from projectiles such that informed decisions can be made in the design process of protective armour systems. Ballistic testing is a standards-based process where materials are tested to determine whether they meet protection, safety and performance criteria. For the V50ballistic test, projectiles are fired at different velocities to determine a key design parameter known as the ballistic limit velocity(BLV), the velocity above which projectiles perforate the target. These tests, however, are destructive by nature and as such there can be considerable associated costs, especially when studying complex armour materials and systems. This study proposes a unique solution to the problem using a recent class of machine learning system known as the Generative Adversarial Network(GAN). The GAN can be used to generate new ballistic samples as opposed to performing additional destructive experiments. A GAN network architecture is tested and trained on three different ballistic data sets, and their performance is compared. The trained networks were able to successfully produce ballistic curves with an overall RMSE of between 10 and 20 % and predicted the V50BLV in each case with an error of less than 5 %. The results demonstrate that it is possible to train generative networks on a limited number of ballistic samples and use the trained network to generate many new samples representative of the data that it was trained on. The paper spotlights the benefits that generative networks can bring to ballistic applications and provides an alternative to expensive testing during the early stages of the design process. 展开更多
关键词 Machine learning generative Adversarial Networks GAN Terminal ballistics Armour systems
在线阅读 下载PDF
Visual-simulation region proposal and generative adversarial network based ground military target recognition 被引量:1
6
作者 Fan-jie Meng Yong-qiang Li +2 位作者 Fa-ming Shao Gai-hong Yuan Ju-ying Dai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第11期2083-2096,共14页
Ground military target recognition plays a crucial role in unmanned equipment and grasping the battlefield dynamics for military applications, but is disturbed by low-resolution and noisyrepresentation. In this paper,... Ground military target recognition plays a crucial role in unmanned equipment and grasping the battlefield dynamics for military applications, but is disturbed by low-resolution and noisyrepresentation. In this paper, a recognition method, involving a novel visual attention mechanismbased Gabor region proposal sub-network(Gabor RPN) and improved refinement generative adversarial sub-network(GAN), is proposed. Novel central-peripheral rivalry 3D color Gabor filters are proposed to simulate retinal structures and taken as feature extraction convolutional kernels in low-level layer to improve the recognition accuracy and framework training efficiency in Gabor RPN. Improved refinement GAN is used to solve the problem of blurry target classification, involving a generator to directly generate large high-resolution images from small blurry ones and a discriminator to distinguish not only real images vs. fake images but also the class of targets. A special recognition dataset for ground military target, named Ground Military Target Dataset(GMTD), is constructed. Experiments performed on the GMTD dataset effectively demonstrate that our method can achieve better energy-saving and recognition results when low-resolution and noisy-representation targets are involved, thus ensuring this algorithm a good engineering application prospect. 展开更多
关键词 Deep learning Biological vision Military application Region proposal network Gabor filter generative adversarial network
在线阅读 下载PDF
基于System Generator的卷积加速结构设计与实现
7
作者 成鸿群 刘宜成 +2 位作者 涂海燕 徐金鹏 王广泰 《计算机应用与软件》 北大核心 2024年第4期224-227,274,共5页
为解决卷积神经网络中卷积运算耗时长、运算复杂的问题,针对卷积运算的并行性特征,提出一种基于分块的流水线加速方法,并基于该方法在System Generator上进行了电路设计。通过在FPGA(Field-programmable Gate Array)上进行实验验证,该... 为解决卷积神经网络中卷积运算耗时长、运算复杂的问题,针对卷积运算的并行性特征,提出一种基于分块的流水线加速方法,并基于该方法在System Generator上进行了电路设计。通过在FPGA(Field-programmable Gate Array)上进行实验验证,该设计模型能正确输出卷积运算结果;在结构和输入数据相同的情况下,该设计模型在计算速度上相比于普通CPU最高可加速258倍,相比于服务器级CPU提高了近40倍,具有良好的加速效果。 展开更多
关键词 卷积神经网络 卷积运算 SYSTEM generATOR 现场可编程门阵列
在线阅读 下载PDF
Influence of Irradiation during Different Development Phases of Male Generative Sphere on Embryo Processes in Cotton Plants Growing in Different Water Supply Conditions
8
作者 A.P.ABUKHOVSKAYA E.E.KARIMOV +2 位作者 S.ODYLOV I.T.KAKHKHAROV S.M.NABIEW 《棉花学报》 CSCD 北大核心 2002年第S1期98-98,共1页
The influence of irradiation by different doses(32)and(60)on microsporogenesis process andmale gametophyte development have beenstudied on different water supplementconditions.We have studied the pollination,fertiliza... The influence of irradiation by different doses(32)and(60)on microsporogenesis process andmale gametophyte development have beenstudied on different water supplementconditions.We have studied the pollination,fertilization,microsporogenesis and earlyembryogeny processes in Mo and FoMo.It 展开更多
关键词 Cotton IRRADIATION fertilization POLLEN doses generative displayed DEFICIT irradiated supplement
在线阅读 下载PDF
Distributed spatio-temporal generative adversarial networks
9
作者 QIN Chao GAO Xiaoguang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期578-592,共15页
Owing to the wide range of applications in various fields,generative models have become increasingly popular.However,they do not handle spatio-temporal features well.Inspired by the recent advances in these models,thi... Owing to the wide range of applications in various fields,generative models have become increasingly popular.However,they do not handle spatio-temporal features well.Inspired by the recent advances in these models,this paper designs a distributed spatio-temporal generative adversarial network(STGAN-D)that,given some initial data and random noise,generates a consecutive sequence of spatio-temporal samples which have a logical relationship.This paper builds a spatio-temporal discriminator to distinguish whether the samples generated by the generator meet the requirements for time and space coherence,and builds a controller for distributed training of the network gradient updated to separate the model training and parameter updating,to improve the network training rate.The model is trained on the skeletal dataset and the traffic dataset.In contrast to traditional generative adversarial networks(GANs),the proposed STGAN-D can generate logically coherent samples with the corresponding spatial and temporal features while avoiding mode collapse.In addition,this paper shows that the proposed model can generate different styles of spatio-temporal samples given different random noise inputs,and the controller can improve the network training rate.This model will extend the potential range of applications of GANs to areas such as traffic information simulation and multiagent adversarial simulation. 展开更多
关键词 distributed spatio-temporal generative adversarial network(STGAN-D) spatial discriminator temporal discriminator speed controller
在线阅读 下载PDF
MTTSNet:Military time-sensitive targets stealth network via real-time mask generation
10
作者 Siyu Wang Xiaogang Yang +4 位作者 Ruitao Lu Zhengjie Zhu Fangjia Lian Qing-ge Li Jiwei Fan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期601-612,共12页
The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time... The automatic stealth task of military time-sensitive targets plays a crucial role in maintaining national military security and mastering battlefield dynamics in military applications.We propose a novel Military Time-sensitive Targets Stealth Network via Real-time Mask Generation(MTTSNet).According to our knowledge,this is the first technology to automatically remove military targets in real-time from videos.The critical steps of MTTSNet are as follows:First,we designed a real-time mask generation network based on the encoder-decoder framework,combined with the domain expansion structure,to effectively extract mask images.Specifically,the ASPP structure in the encoder could achieve advanced semantic feature fusion.The decoder stacked high-dimensional information with low-dimensional information to obtain an effective mask layer.Subsequently,the domain expansion module guided the adaptive expansion of mask images.Second,a context adversarial generation network based on gated convolution was constructed to achieve background restoration of mask positions in the original image.In addition,our method worked in an end-to-end manner.A particular semantic segmentation dataset for military time-sensitive targets has been constructed,called the Military Time-sensitive Target Masking Dataset(MTMD).The MTMD dataset experiment successfully demonstrated that this method could create a mask that completely occludes the target and that the target could be hidden in real time using this mask.We demonstrated the concealment performance of our proposed method by comparing it to a number of well-known and highly optimized baselines. 展开更多
关键词 Deep learning Military application Targets stealth network Mask generation generative adversarial network
在线阅读 下载PDF
基于德尔菲法的全科住院医师临床思维能力评价体系构建研究 被引量:5
11
作者 宋一帆 韩庆烽 +1 位作者 肖卫忠 杨振华 《中国全科医学》 CAS 北大核心 2025年第1期77-82,共6页
背景全科医学的临床思维基于全科医学专业的自身特点,有其独特性,要求全科医师具备“以患者为中心”的临床诊断和治疗技能。为了更好地反映出全科临床住院医师的临床思维能力,需要建立一套完善的、可以反映出其全方面能力的有效评价标准... 背景全科医学的临床思维基于全科医学专业的自身特点,有其独特性,要求全科医师具备“以患者为中心”的临床诊断和治疗技能。为了更好地反映出全科临床住院医师的临床思维能力,需要建立一套完善的、可以反映出其全方面能力的有效评价标准,目前尚无适用于衡量全科住院医师临床思维能力的评价体系。目的通过德尔菲法(Delphi法)构建全科住院医师以岗位胜任力为导向的临床思维能力评价体系。方法2021年12月—2022年2月,本课题组基于文献研究初步构建了全科住院医师临床思维能力指标体系框架,运用Delphi法,与12位专家进行了两轮深入沟通,就指标的重要性给出客观评估,筛选出合适的指标,并运用层次分析法确定每个指标的权重。结果通过两轮专家咨询,本课题组建立了一个综合性的评估体系,其中包括5个一级指标(临床知识学习和扩展、资料收集和利用、诊断分析和利用、治疗决策能力、沟通和合作能力)以及30个二级指标。两轮咨询问卷有效回收率达到100.0%,专家权威系数为0.85,一级和二级指标的专家协调系数分别达到了0.299和0.189(P<0.01),一级指标的权重分别为0.198、0.198、0.227、0.227、0.150。结论本研究使用Delphi法建立一个全面评价住院医师临床思维能力的评估体系。经过对结果数据分析可知该评估体系具有较高的权威性和科学性,为今后培养高质量全科住院医师,提升全科医学教学质量提供了参考。 展开更多
关键词 全科医学 临床思维能力 评价体系 全科住院医师 德尔菲法
在线阅读 下载PDF
ChatGPT类生成式人工智能写作的运行机理、风险挑战和应对策略 被引量:3
12
作者 高萍 丁宁 《内蒙古社会科学》 北大核心 2025年第2期144-151,F0003,共9页
ChatGPT类生成式人工智能写作作为智能时代不可忽视的写作现象,具有交互的主体性、流动的劳动分工和“镜像化”的文本内容等特点。随着生成式人工智能在各类写作实践中的普及,人类或将面临写作主体性被消解、政治秩序被撕裂和写作劳动... ChatGPT类生成式人工智能写作作为智能时代不可忽视的写作现象,具有交互的主体性、流动的劳动分工和“镜像化”的文本内容等特点。随着生成式人工智能在各类写作实践中的普及,人类或将面临写作主体性被消解、政治秩序被撕裂和写作劳动被异化的风险。因此,应立足生成式人工智能的运行机理和价值本源,通过重塑人机共享主体性、重构国家安全智能治理生态和重建智能劳动体系来应对和化解潜在风险,促进ChatGPT类生成式人工智能写作实践的良性健康发展。 展开更多
关键词 ChatGPT 生成式人工智能 写作
在线阅读 下载PDF
生成式人工智能赋能职业院校学生学习:现状与应对 被引量:4
13
作者 胡秀锦 覃利春 杨可扬 《职业技术教育》 北大核心 2025年第2期29-34,共6页
生成式人工智能以其独特的技术属性与强大功能将会引发学习的全方位变革。对上海市13所中高职院校3505名学生的调研发现,学生对人工智能有所了解,认知比较理性,具备一定的智能化学习素养,对利用生成式人工智能开展学习有着明确的需求。... 生成式人工智能以其独特的技术属性与强大功能将会引发学习的全方位变革。对上海市13所中高职院校3505名学生的调研发现,学生对人工智能有所了解,认知比较理性,具备一定的智能化学习素养,对利用生成式人工智能开展学习有着明确的需求。但从现实来看,生成式人工智能赋能学生学习面临着学生的应用能力不足、思维钝化、违反学术伦理等困境与挑战。未来,政府层面需要明确规制,优化教育领域的人工智能应用设计;学校层面需要强化赋能,增强利用人工智能的思想意识和应对策略;教师层面需要转变观念,引领学生实现高质量的学习;学生个体层面需要面向未来,不断提升自身的生成式人工智能技术素养。 展开更多
关键词 职业院校 生成式人工智能 学生学习
在线阅读 下载PDF
“大、小、重、慢”疾病定义与全科医生“4善”定位的探讨 被引量:1
14
作者 李敏 王仲 《中国全科医学》 CAS 北大核心 2025年第1期125-128,共4页
随着我国医药卫生体制的深度改革,特别是分级诊疗制度的推进,全科医生在基层医疗保健体系中的角色日益重要。全科医生不仅是居民健康的第一道防线,更是常见疾病预防、诊断、治疗及健康教育的关键执行者。国家对全科医生提出了“小病善... 随着我国医药卫生体制的深度改革,特别是分级诊疗制度的推进,全科医生在基层医疗保健体系中的角色日益重要。全科医生不仅是居民健康的第一道防线,更是常见疾病预防、诊断、治疗及健康教育的关键执行者。国家对全科医生提出了“小病善治、大病善识、重病善转、慢病善管”的临床定位。本文通过问答形式,分析“小、大、重、慢”疾病的分类与全科医生的“4善”定位,探讨全科医生在新医改时代下的重要职能及挑战。访谈者认为虽然分级诊疗制度旨在优化医疗资源配置,但在实践中仍面临“大、小、重、慢”疾病分类的模糊性和基层医疗资源的不均衡分配等问题。全科医生在这个体系中扮演着至关重要的角色,其需要具备综合的临床诊疗能力,并与专科医生共同制定临床判断标准和诊疗标准。为了应对这些挑战并充分发挥全科医生在现代医疗体系中的作用,迫切需要对全科医学教育和实践进行进一步改革与优化,同时强化全科医生的角色定位,以确保在提升医疗服务质量和效率的同时,实现公平和可持续的健康保障体系。 展开更多
关键词 全科医学 全科医生 分级诊疗 医疗体系改革 疾病分类 医疗资源优化
在线阅读 下载PDF
Murtagh安全诊断策略联合思维导图构建临床思维在全科教学门诊中的应用 被引量:2
15
作者 杨玲 杜雪平 《中国全科医学》 CAS 北大核心 2025年第6期673-680,共8页
全科教学门诊是培养住院医师规范化培训(简称住培)全科医生临床思维、提升全科诊疗能力的重要培训方法。本文用1例以乏力为主要表现的患者为教学案例,介绍全科教学门诊中采用澳大利亚著名全科医学专家John Murtagh提出的Murtagh安全诊... 全科教学门诊是培养住院医师规范化培训(简称住培)全科医生临床思维、提升全科诊疗能力的重要培训方法。本文用1例以乏力为主要表现的患者为教学案例,介绍全科教学门诊中采用澳大利亚著名全科医学专家John Murtagh提出的Murtagh安全诊断策略启发住培全科医生对乏力进行诊断与鉴别诊断:(1)引起乏力的常见疾病有哪些?(2)哪些重要疾病是不能忽视的?(3)乏力有什么容易被遗漏的疾病?(4)是否存在潜在的容易被掩盖的疾病?(5)患者是否有话没有说?结合病史、体格检查和实验室检查结果初步诊断为抗中性粒细胞胞浆抗体相关性血管炎引起急进性肾小球肾炎可能性大,及时转诊,肾病理检查确诊乏力的病因为抗中性粒细胞胞浆抗体相关性肾小球肾炎,取得满意疗效。带教老师基于Murtagh安全诊断策略帮助住培全科医生构建乏力鉴别、分析的系统知识框架,从而提升住培全科医生的临床逻辑思维能力和解决临床实际问题的能力;以思维导图为辅助工具,将Murtagh安全诊断策略诊断与鉴别诊断思路可视化、形象化,优化教学效果。 展开更多
关键词 全科医学 Murtagh安全诊断策略 思维导图 全科临床思维 乏力 抗中性粒细胞胞浆抗体相关性肾小球肾炎
在线阅读 下载PDF
生成式人工智能辅助学科情报服务途径探析——以利用ChatGPT生成学科领域论文分析报告为例 被引量:5
16
作者 江珊 常定姁 +3 位作者 张开阳 龚芙蓉 张宁 盛芳 《大学图书馆学报》 北大核心 2025年第1期93-102,共10页
生成式人工智能的出现为图书馆的学科情报服务带来了新的机遇和挑战。文章基于工作实例,以ChatGPT-4为具体工具,探讨了利用生成式人工智能辅助制作学科领域论文分析报告的途径与方法。研究涵盖了从学科领域的确定到报告内容的生成,论述... 生成式人工智能的出现为图书馆的学科情报服务带来了新的机遇和挑战。文章基于工作实例,以ChatGPT-4为具体工具,探讨了利用生成式人工智能辅助制作学科领域论文分析报告的途径与方法。研究涵盖了从学科领域的确定到报告内容的生成,论述了在检索式生成、数据准备、数据分析与可视化、文献内容挖掘等环节中有效利用该工具的策略。研究结果表明,ChatGPT在学科领域分析报告的多个阶段均能发挥重要作用,其灵活性、智能化与高效性显著提升了文献分析的深度和质量,为学科情报服务的优化提供了实证依据。 展开更多
关键词 ChatGPT 生成式人工智能 学科情报服务 论文分析
在线阅读 下载PDF
协同探究智创:生成式人工智能时代的学习新模式 被引量:4
17
作者 魏非 杨可欣 祝智庭 《开放教育研究》 北大核心 2025年第2期14-23,共10页
基于生成式人工智能的学习模式构建与应用是当下教育者关注的热点。本研究在剖析生成式人工智能应用于学习的潜在风险和相关学习模式不足的基础上,以建构主义学习、联通主义学习和社会文化等理论为基础,构建了基于生成式人工智能技术的... 基于生成式人工智能的学习模式构建与应用是当下教育者关注的热点。本研究在剖析生成式人工智能应用于学习的潜在风险和相关学习模式不足的基础上,以建构主义学习、联通主义学习和社会文化等理论为基础,构建了基于生成式人工智能技术的,以学习与创新深度融合为取向的,显著体现协同、探究特征的协同探究智创模式,并阐释了该模式的定义、核心要素和实践模式。在此基础上,本研究针对模式应用中的提问和对话、任务设计以及学习评价等关键实施要素提出操作建议,尤其是在“人工智能质询”环节,强调以思想引领和讨论启发为要领的提问和对话流程。研究最后从增强人机协同能力、应用解释式人工智能和整合场景小模型等角度提出协同探究智创模式发展的未来图景。协同探究智创模式可促进学习者在开放、互动环境中探索问题、生成知识和创新实践,实现学习与创新深度融合,可更好地回应新质人才培养需求。 展开更多
关键词 生成式人工智能 学习模式 协同探究 对话策略
在线阅读 下载PDF
人工智能大模型训练数据的风险类型与法律规制 被引量:14
18
作者 黄锫 《政法论丛》 北大核心 2025年第1期23-37,共15页
训练数据对于人工智能大模型的开发具有不可或缺的重要作用。但是基于我国现行的法律制度和大模型的技术原理,会存在训练数据侵权风险、训练数据偏差风险和训练数据泄露风险等三种风险类型。人工智能大模型训练数据的侵权风险主要包括... 训练数据对于人工智能大模型的开发具有不可或缺的重要作用。但是基于我国现行的法律制度和大模型的技术原理,会存在训练数据侵权风险、训练数据偏差风险和训练数据泄露风险等三种风险类型。人工智能大模型训练数据的侵权风险主要包括大模型预训练时使用作品类数据可能会违反《著作权法》的规定、使用个人信息数据可能会违反《个人信息保护法》的规定等两种情形。人工智能大模型训练数据的偏差风险主要包括价值性偏差风险、时效性偏差风险和真实性偏差风险等三种情形。人工智能大模型训练数据的泄露风险主要包括面向开发者的数据泄露风险、面向攻击者的数据泄露风险等两种情形。可以通过调整现行立法来满足人工智能大模型开发者的训练数据需求,通过元规制的方式激励人工智能大模型开发者防范训练数据的偏差风险,以及通过加强法定义务督促人工智能大模型开发者防范训练数据的泄露风险。 展开更多
关键词 生成式人工智能 大模型 训练数据 法律规制
在线阅读 下载PDF
基层医疗卫生机构全科医生工作满意度及影响因素研究 被引量:2
19
作者 张鹏 刘力滴 +3 位作者 廖晓阳 伍佳 杨梓钰 张亚琳 《中国全科医学》 北大核心 2025年第7期869-874,共6页
背景 我国基层全科医生数量缺口大,基层全科医生工作满意度低是导致人才匮乏的重要因素。目的 了解基层医疗卫生机构全科医生的工作满意度及影响因素。方法 于2018年12月—2019年1月,对成都市基层医疗卫生机构所有注册为全科医学专业的... 背景 我国基层全科医生数量缺口大,基层全科医生工作满意度低是导致人才匮乏的重要因素。目的 了解基层医疗卫生机构全科医生的工作满意度及影响因素。方法 于2018年12月—2019年1月,对成都市基层医疗卫生机构所有注册为全科医学专业的全科医生(n=1 549)进行问卷调查,内容包括全科医生的基本信息、工作满意度及其对提高工作满意度的建议。采用无序多分类Logistic回归分析基层全科医生工作满意度的影响因素。结果 回收有效问卷1 539份,问卷有效应答率为99.35%。全科医生的总体工作满意度为(114.0±17.2)分,处于“一般”水平。其中,工作流程维度的平均得分最低,为(10.6±2.5)分,处于“不满意”水平;其他维度的平均得分皆处于“一般”水平;薪酬和福利待遇维度的得分相对较低,分别为(11.8±2.8)分和(11.6±2.8)分。不同性别、年龄全科医生的总体工作满意度比较,差异有统计学意义(P<0.05);不同学历、职称、工作年限全科医生的总体工作满意度比较,差异无统计学意义(P>0.05)。多元Logistic回归分析结果显示,年龄是全科医生总体工作满意度的影响因素(P<0.05),30~39岁[OR(95%CI)=0.132(0.035~0.494)]和40~49岁[OR(95%CI)=0.207(0.065~0.664)]全科医生的总体工作满意度低于≥50岁者(P<0.05)。提出提高自身工作满意度建议的人数为419名,共提建议427人次。其中,“提高待遇”的建议居首位(25.53%,109/427)。结论 成都市基层医疗卫生机构全科医生的总体工作满意度一般,全科医生对工作流程最不满意,最希望提高待遇,年龄是基层全科医生工作满意度的影响因素。建议针对全科医生满意度“短板”,采取有效措施提高其工作满意度,如简化工作流程、实施“按劳分配”等。 展开更多
关键词 全科医生 初级卫生保健 职业满意 影响因素分析
在线阅读 下载PDF
基于条件生成对抗网络与迁移学习的暂态电压稳定超前判别 被引量:2
20
作者 王渝红 何其多 +5 位作者 郑宗生 周旭 马欢 程定一 赵康 周辰予 《电力自动化设备》 北大核心 2025年第2期159-166,共8页
为解决样本不平衡导致的暂态电压稳定判别准确性不足的问题以及实现暂态电压稳定超前判别,提出一种基于条件生成对抗网络(CGAN)与迁移学习的暂态电压稳定超前判别方法。考虑暂态电压稳定样本类型,利用CGAN定向扩增暂态电压样本集,解决... 为解决样本不平衡导致的暂态电压稳定判别准确性不足的问题以及实现暂态电压稳定超前判别,提出一种基于条件生成对抗网络(CGAN)与迁移学习的暂态电压稳定超前判别方法。考虑暂态电压稳定样本类型,利用CGAN定向扩增暂态电压样本集,解决样本不平衡问题,从而提升暂态电压稳定判别准确性;考虑到CGAN生成器与暂态电压时序预测模型具有相似的学习任务,将CGAN生成器模型迁移至暂态电压时序预测模型,结合工程判据实现暂态电压稳定超前判别,并进一步提升暂态电压稳定判别准确性。在CEPRI-VC暂态电压稳定分析系统中验证了所提方法的有效性。 展开更多
关键词 暂态电压稳定 稳定超前判别 迁移学习 条件生成对抗网络 数据生成
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部