期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于A-CGAN的深反射地震数据随机噪声压制方法研究 被引量:3
1
作者 韩建光 王卿 +1 位作者 许媛 刘志伟 《地质论评》 CAS CSCD 北大核心 2024年第1期228-238,共11页
基于深度学习的地震数据噪声压制方法是当前地震数据去噪处理的重要方向。深度学习方法突破了传统滤波处理的局限,在对常规地震数据的噪声压制中表现出效率高、信噪分离效果好的特点。但针对深部弱有效反射数据,当前的深度学习方法特征... 基于深度学习的地震数据噪声压制方法是当前地震数据去噪处理的重要方向。深度学习方法突破了传统滤波处理的局限,在对常规地震数据的噪声压制中表现出效率高、信噪分离效果好的特点。但针对深部弱有效反射数据,当前的深度学习方法特征提取能力有限,难以取得较好的去噪效果。笔者等结合深反射地震数据特点,针对当前深度学习噪声压制方法在特征提取及对数据集依赖上的局限,提出了基于注意力循环生成对抗网络(Attention Cycle-Consistent Generative Adversarial Networks,A-CGAN)的深反射地震数据随机噪声压制方法。借助循环一致生成对抗网络(Cycle-Consistent Generative Adversarial Networks,Cycle-GAN)的域映射思想,降低对数据集的要求。为了构建适用于深反射地震数据的去噪网络,从3个方面对Cycle-GAN进行改进:在Cycle-GAN的生成器(去噪器)中加入残差结构和注意力机制,用于加深网络深度和提高其特征提取能力;在Cycle-GAN的鉴别器中使用块判决,提高鉴别精度和准确度;在损失函数部分加入感知一致性损失函数,提升网络模型恢复纹理细节信息的能力。通过合成地震数据和实际深反射地震数据测试,验证了优化算法的有效性,体现了良好的应用价值。 展开更多
关键词 深反射地震数据 噪声压制 深度学习 借助循环一致生成对抗网络
在线阅读 下载PDF
基于改进循环生成式对抗网络的图像去雾方法 被引量:4
2
作者 黄山 贾俊 《计算机工程》 CAS CSCD 北大核心 2022年第12期218-223,231,共7页
针对现有图像去雾方法存在的颜色失真、细节丢失以及去雾效果不自然等问题,提出一种改进的循环生成式对抗网络用于图像去雾。通过添加多尺度鉴别器作为判别器来改进原始网络结构,增强判别能力,引导网络产生更精细自然的无雾图像。同时... 针对现有图像去雾方法存在的颜色失真、细节丢失以及去雾效果不自然等问题,提出一种改进的循环生成式对抗网络用于图像去雾。通过添加多尺度鉴别器作为判别器来改进原始网络结构,增强判别能力,引导网络产生更精细自然的无雾图像。同时重新设计损失函数,使用最小二乘代替交叉熵作为对抗损失,引入循环感知损失,结合原始循环一致性损失组成新的复合损失函数,提高图像颜色与细节恢复的质量。在D-HAZY和SOTS数据集上的实验结果表明:该方法能够生成较为自然的无雾图像,其主观效果和客观指标均优于对比方法,具有更好的去雾能力;与原始循环生成式对抗网络相比,峰值信噪比从19.052 dB提高至23.128 dB,结构相似性指数从0.787提高至0.867。与DehazeNet、AOD-Net与GCANet等主流去雾方法相比,峰值信噪比和结构相似性指数比排名第二的方法分别提升7.1%和4.3%。 展开更多
关键词 图像去雾 循环生成式对抗网络 多尺度鉴别器 对抗损失 循环感知损失
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部