期刊文献+
共找到186篇文章
< 1 2 10 >
每页显示 20 50 100
基于SQP和GRNN的商用客车动力学参数自适应辨识
1
作者 房熙博 宁一高 +1 位作者 赵轩 周猛 《汽车安全与节能学报》 北大核心 2025年第4期648-656,共9页
提出了一种基于广义回归神经网络(GRNN)模型和序列二次规划(SQP)算法的自适应辨识策略,用于获取商用客车动力学参数并对其实时辨识。建立GRNN模型,用SQP算法获取GRNN模型的训练集对其进行训练,使其根据车辆的运行状态,自适应辨识出关键... 提出了一种基于广义回归神经网络(GRNN)模型和序列二次规划(SQP)算法的自适应辨识策略,用于获取商用客车动力学参数并对其实时辨识。建立GRNN模型,用SQP算法获取GRNN模型的训练集对其进行训练,使其根据车辆的运行状态,自适应辨识出关键参数;搭建TruckSim与Matlab/Simulink联合仿真平台,在不同工况下进行仿真试验。结果表明:相较于固定参数模型,在正弦波转角工况下,采用该模型的质心侧偏角与TruckSim模型的最大值误差减小73.9%;其侧倾角与TruckSim模型的最大值误差减少了76.7%;在双移线工况下,这2个误差分别减小98.0%和63.1%。从而,证明了本文方法的可行性和有效性。 展开更多
关键词 汽车安全 商用客车 序列二次规划(SQP)算法 广义回归神经网络(grnn)模型 动力学参数 自适应辨识
在线阅读 下载PDF
改进的MVO-GRNN神经网络岩爆预测模型研究 被引量:7
2
作者 侯克鹏 包广拓 孙华芬 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期923-932,共10页
准确预测岩爆烈度等级能有效指导岩爆灾害的防控。根据影响岩爆发生及烈度等级的3个因素构建岩爆评价指标体系,提出一种基于改进多元宇宙算法(Improved Multi-Verse Optimizer,IMVO)优化广义回归神经网络(General Regression Neural Net... 准确预测岩爆烈度等级能有效指导岩爆灾害的防控。根据影响岩爆发生及烈度等级的3个因素构建岩爆评价指标体系,提出一种基于改进多元宇宙算法(Improved Multi-Verse Optimizer,IMVO)优化广义回归神经网络(General Regression Neural Network,GRNN)的岩爆预测模型。在普通多元宇宙算法(MVO)的基础上,运用自适应平衡机制调节MVO算法中的虫洞存在概率(V_(WEP))和旅行距离率(V_(TDR))两个重要参数来改进该算法;再运用改进的多元宇宙算法优化广义回归神经网络的光滑度,通过训练数据优选出最佳光滑因子σ,得到IMVO-GRNN神经网络岩爆烈度预测模型;最后结合工程实例验证模型的性能。研究表明,该模型相比传统模型寻优能力更强,精度更高,为岩爆预测提供了一种新的思路。 展开更多
关键词 安全工程 岩爆预测 多元宇宙算法 广义回归神经网络(grnn) 虫洞存在概率 旅行距离率
在线阅读 下载PDF
基于GRNN-MC的变压器振动信号预测 被引量:5
3
作者 钱国超 王山 +3 位作者 张家顺 代维菊 朱龙昌 王丰华 《电工电能新技术》 CSCD 北大核心 2024年第3期41-48,共8页
变压器振动信号是评估其工作状态的重要参数之一,与绕组松动或变形等隐患密切相关,为揭示变压器振动信号的变化趋势,本文提出了一种基于广义回归神经网络和马尔科夫链修正的变压器振动信号预测方法。即分别以变压器运行电压、负载电流... 变压器振动信号是评估其工作状态的重要参数之一,与绕组松动或变形等隐患密切相关,为揭示变压器振动信号的变化趋势,本文提出了一种基于广义回归神经网络和马尔科夫链修正的变压器振动信号预测方法。即分别以变压器运行电压、负载电流和振动信号归一化特征频率为输入和输出建立变压器振动信号广义回归神经网络预测模型,然后引入马尔科夫链并结合负载电流的变化对振动信号计算结果进行修正以获得最终的预测结果。对某500 kV变压器振动在线监测信号的分析结果表明:经马尔科夫链修正后的变压器广义回归神经网络振动信号预测模型预测精度高,可为变压器绕组运行状态的振动监测技术提供重要参考。 展开更多
关键词 变压器 振动信号 广义回归神经网络 马尔科夫链 归一化特征频率
在线阅读 下载PDF
基于SSA-GRNN的汽油机过渡工况进气流量预测研究
4
作者 陈侗 李岳林 +2 位作者 张五龙 谢清华 尹钰屹 《汽车技术》 CSCD 北大核心 2024年第12期54-62,共9页
针对过渡工况下汽油机进气流量预测难度较高的问题,构建了一种基于麻雀搜索算法(SSA)优化广义回归神经网络(GRNN)的进气流量预测模型。该模型利用SSA算法对GRNN的平滑因子进行寻优辨识,并采用斯皮尔曼法和对比分析法提取模型的特征参数... 针对过渡工况下汽油机进气流量预测难度较高的问题,构建了一种基于麻雀搜索算法(SSA)优化广义回归神经网络(GRNN)的进气流量预测模型。该模型利用SSA算法对GRNN的平滑因子进行寻优辨识,并采用斯皮尔曼法和对比分析法提取模型的特征参数,以达到较好的预测精度和泛化性能。运用过渡工况进气流量样本数据对模型进行训练和预测,结果表明:在加减速工况下,SSA-GRNN模型预测值的平均相对误差均小于1%;相较于BP、RBF和GA-SVR进气流量预测模型,SSA-GRNN模型具有更高的预测精度和泛化性能,更加适用于汽油机过渡工况进气流量的预测。 展开更多
关键词 汽油机 麻雀搜索算法 寻优辨识 广义回归神经网络 进气流量 过渡工况
在线阅读 下载PDF
基于改进GWO-GRNN的管道焊缝三维重构测量
5
作者 高博轩 赵弘 苗兴园 《机床与液压》 北大核心 2024年第1期1-10,共10页
为提高双目相机不同位姿下焊缝的三维重构测量精度,提出一种基于立体视觉图像误差补偿的管道焊缝三维重构测量方法。采用改进灰狼算法(IGWO)优化广义回归神经网络(GRNN)补偿焊缝三维重构图像点的坐标误差。采用混沌映射、非线性收敛因... 为提高双目相机不同位姿下焊缝的三维重构测量精度,提出一种基于立体视觉图像误差补偿的管道焊缝三维重构测量方法。采用改进灰狼算法(IGWO)优化广义回归神经网络(GRNN)补偿焊缝三维重构图像点的坐标误差。采用混沌映射、非线性收敛因子和最优记忆保存思想对GWO算法进行改进,通过8个标准测试函数进行仿真验证;利用优化后的GRNN模型对图像点坐标误差进行预测和补偿,计算三维坐标重构出焊缝点云,三维测量焊缝的焊宽、余高和长度。试验结果表明:该模型在双目相机不同的位姿状态下都能较准确地实现焊缝的三维重构,焊缝的三维测量相对误差在0.9%以内。 展开更多
关键词 立体视觉 图像误差补偿 改进灰狼优化 广义回归神经网络 焊缝三维重构测量
在线阅读 下载PDF
基于深度学习和骨架结构MHA-RNN的农药分子生成模型
6
作者 袁洪波 周焕笛 +2 位作者 霍静倩 张金林 程曼 《农业工程学报》 北大核心 2025年第1期200-211,共12页
近年来,深度学习模型在农药发现和从头分子设计方面取得了显著进展。然而目前用于农药分子设计的深度生成模型中,基于骨架的分子生成模型较少。并且基于骨架的分子生成方法面临着生成分子质量和多样性不足的挑战。为此,该研究提出了一... 近年来,深度学习模型在农药发现和从头分子设计方面取得了显著进展。然而目前用于农药分子设计的深度生成模型中,基于骨架的分子生成模型较少。并且基于骨架的分子生成方法面临着生成分子质量和多样性不足的挑战。为此,该研究提出了一种基于骨架结构的循环神经网络模型(multi head attention-recurrent neural network,MHA-RNN),首先生成简化分子线性输入规范(simplified molecular input line entry system,SMILES)格式的分子骨架,然后对骨架进行装饰以生成新的分子。试验结果表明,模型生成的分子在有效性、新颖性和唯一性方面分别达到了97.18%、99.87%和100.00%。此外,生成分子在脂水分配系数(logarithm of partition coefficient,LogP)、拓扑极性表面积(topological polar surface area,TPSA)、相对分子质量(molecular weight,MW)、类药性(quantitative estimate of drug-likeness,QED)、氢键受体(hydrogen bond acceptor,HBA)、氢键供体(hydrogen bond donor,HBD)、旋转键数(rotatable bonds,RotB)等性质上的分布与现有分子高度相似,研究结果为农药新药研发提供了技术支持与参考。 展开更多
关键词 农药研发 分子生成 分子骨架 循环神经网络 注意力机制
在线阅读 下载PDF
GRNN在肌电预测踝关节运动中的应用 被引量:30
7
作者 戴虹 钱晋武 +2 位作者 张震 沈林勇 章亚男 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第4期845-852,共8页
下肢运动预测对于步行康复机器人患者主动训练控制系统的设计具有重要意义。提出一种基于广义回归神经网络(GRNN)的利用肌电信号预测踝关节角轨迹算法:分别用肌电图仪和三维运动捕捉仪同步采集踝关节做屈伸运动时周围五块肌肉的肌电信... 下肢运动预测对于步行康复机器人患者主动训练控制系统的设计具有重要意义。提出一种基于广义回归神经网络(GRNN)的利用肌电信号预测踝关节角轨迹算法:分别用肌电图仪和三维运动捕捉仪同步采集踝关节做屈伸运动时周围五块肌肉的肌电信号和踝关节角度,并对肌电信号进行特征提取。基于主分量分析的数值算法对肌电数据进行降维,得到肌电主分量信号。基于肌电主分量信号利用GRNN算法预测踝关节角轨迹,用黄金分割搜索算法确定GRNN中的最佳平滑参数σ。采用小波消噪算法对踝关节角预测轨迹进行滤波以提高预测精度。用上述算法对9名志愿者进行实验的结果表明:该方法预测精度较高,与BP神经网络预测算法相比运算时间短且预测误差较小,因而更适用于下肢关节角轨迹的在线预测。 展开更多
关键词 广义回归神经网络 肌电信号 踝关节角 主分量分析 小波分析
在线阅读 下载PDF
基于CNN-GRNN模型的图像识别 被引量:19
8
作者 江帆 刘辉 +2 位作者 王彬 孙晓峰 代照坤 《计算机工程》 CAS CSCD 北大核心 2017年第4期257-262,共6页
卷积神经网络(CNN)模型在图像识别中取得了良好的效果,但其识别精度还有进一步提升的空间。为此,设计一种新的图像识别模型CNN-GRNN。利用CNN提取样本图像中的多层次特征信息,将广义回归神经网络代替反向传播神经网络,以提高分类器的泛... 卷积神经网络(CNN)模型在图像识别中取得了良好的效果,但其识别精度还有进一步提升的空间。为此,设计一种新的图像识别模型CNN-GRNN。利用CNN提取样本图像中的多层次特征信息,将广义回归神经网络代替反向传播神经网络,以提高分类器的泛化能力和鲁棒性,通过均方差和降梯度法训练模型。基于COIL-100和手势库的实验结果表明,与灰度共生矩阵、HU距方法、CNN和CNN-SVM模型相比,CNN-GRNN的识别率分别提升了42.2%,13.43%,3.99%和1.86%,并具有较好的实时性。 展开更多
关键词 卷积神经网络 广义回归神经网络 支持向量机 反向传播神经网络 降梯度法
在线阅读 下载PDF
基于sEMG和GRNN的手部输出力估计 被引量:13
9
作者 吴常铖 宋爱国 +2 位作者 曾洪 李会军 徐宝国 《仪器仪表学报》 EI CAS CSCD 北大核心 2017年第1期97-104,共8页
针对智能肌电假手力控制的需要,提出一种基于表面肌电信号(s EMG)和广义回归神经网络(GRNN)的手部输出力估计方法。首先在介绍实验平台的基础上详细描述了肌电信号的采集和特征提取方法以及广义回归神经网络的构建;然后,通过在手臂8个... 针对智能肌电假手力控制的需要,提出一种基于表面肌电信号(s EMG)和广义回归神经网络(GRNN)的手部输出力估计方法。首先在介绍实验平台的基础上详细描述了肌电信号的采集和特征提取方法以及广义回归神经网络的构建;然后,通过在手臂8个不同部位粘贴肌电传感器来检测手部动作过程中的肌电信号;同时为了全面测量人手在三维空间中的输出力,采用三维力传感器对手部的输出力进行测量;在同步获得手臂上的多通道肌电信号(X)和手部三维力推拉信号(F)后,对采集得到肌电信号进行了特征提取得到特征矩阵X_F;将X_F和F用于构建GRNN网络,并用均方差和残差绝对值均值对手部输出力的估计结果进行评估。为验证该方法的有效性,进行了实验验证,结果表明,该方法能够很好地利用sEMG对手部的输出力进行估计。 展开更多
关键词 表面肌电信号 广义回归神经网络 手部输出力估计
在线阅读 下载PDF
基于GRNN网络的CO_2气体保护焊工艺碳排放建模与参数优化 被引量:16
10
作者 罗毅 曹华军 +1 位作者 李洪丞 程海琴 《中国机械工程》 EI CAS CSCD 北大核心 2013年第17期2398-2403,共6页
以CO2气体保护焊为研究对象,通过对其碳排放特性进行分析,综合考虑物料、能源及工艺三个碳排放源,建立了焊接工艺碳排放特性函数;以质量和成本为约束,利用广义回归神经网络拟合各输入参数与质量、成本和碳排放的关系,建立了碳排放综合... 以CO2气体保护焊为研究对象,通过对其碳排放特性进行分析,综合考虑物料、能源及工艺三个碳排放源,建立了焊接工艺碳排放特性函数;以质量和成本为约束,利用广义回归神经网络拟合各输入参数与质量、成本和碳排放的关系,建立了碳排放综合评价优化模型,并采用遗传算法进行求解。将该模型应用于装载机燃油箱焊接工艺参数的选择,应用结果表明,该模型能在保证油箱焊接质量和成本的前提下降低工艺过程碳排放。 展开更多
关键词 焊接碳排放 grnn网络 遗传算法 参数选择
在线阅读 下载PDF
基于GRNN网络和遗传算法的旋翼动平衡调整 被引量:11
11
作者 刘红梅 王少萍 欧阳平超 《北京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第5期507-511,共5页
针对传统旋翼调整方法没有考虑调整参数与振动信号之间的非线性关系,提出一种结合广义回归神经网络GRNN(General Regression Neural Network)和遗传算法的旋翼调整方法,采用GRNN建立旋翼动平衡调整模型,以桨叶调整参数作为GRNN输入,以... 针对传统旋翼调整方法没有考虑调整参数与振动信号之间的非线性关系,提出一种结合广义回归神经网络GRNN(General Regression Neural Network)和遗传算法的旋翼调整方法,采用GRNN建立旋翼动平衡调整模型,以桨叶调整参数作为GRNN输入,以旋翼转轴3个方向的加速度测量值和机身3个方向加速度测量值作为网络输出,建立调整参数与直升机振动信号之间的模型.以直升机振动作为目标函数,采用改进的遗传算法对桨叶调整参数进行寻优,获得直升机振动最小时的桨叶的调整量.飞行实验表明,通过1到2次飞行调整,可使3个方向机身振动(旋翼的一阶振动)为最小,完成旋翼的动平衡调整. 展开更多
关键词 旋翼 动平衡 广义回归神经网络(grnn) 遗传算法 优化
在线阅读 下载PDF
修正型果蝇算法优化GRNN网络的尾矿库安全预测 被引量:16
12
作者 王英博 聂娜娜 +1 位作者 王铭泽 李仲学 《计算机工程》 CAS CSCD 北大核心 2015年第4期267-272,共6页
针对尾矿库事故具有随机波动性和非线性的特点,提出采用修正型果蝇优化算法优化广义回归神经网络的尾矿库安全评价模型(MFOA-GRNN)。该方法利用修正型果蝇优化算法的全局寻优特性对广义回归神经网络进行参数优化,同时应用去相关性分析... 针对尾矿库事故具有随机波动性和非线性的特点,提出采用修正型果蝇优化算法优化广义回归神经网络的尾矿库安全评价模型(MFOA-GRNN)。该方法利用修正型果蝇优化算法的全局寻优特性对广义回归神经网络进行参数优化,同时应用去相关性分析选取尾矿库安全评价指标,实现尾矿库的安全预测。以辽宁本溪南芬尾矿库为研究实例进行拟合预测,实验结果表明,将MFOA方法与GRNN网络有机结合,有利于平滑因子σ的选择,相较于FOA-GRNN模型70%的预测准确度,采用修正型果蝇算法优化的GRNN模型预测准确度高达100%,预测精度更高,适用性更强。 展开更多
关键词 尾矿库 果蝇优化算法 广义回归神经网络 平滑因子 参数优化 安全预测
在线阅读 下载PDF
GRNN模型在煤与瓦斯突出及瓦斯含量预测中的应用 被引量:22
13
作者 付小平 薛新华 李洪涛 《中国安全科学学报》 CAS CSCD 北大核心 2012年第1期24-28,共5页
煤与瓦斯突出的作用机理非常复杂,是诸多因素如地应力、煤层瓦斯、煤体物理力学性质等共同作用的结果。在分析广义回归神经网络(GRNN)的基本原理和算法的基础上,建立煤与瓦斯突出等级以及基于构造复杂程度定量评价的瓦斯含量GRNN模型。... 煤与瓦斯突出的作用机理非常复杂,是诸多因素如地应力、煤层瓦斯、煤体物理力学性质等共同作用的结果。在分析广义回归神经网络(GRNN)的基本原理和算法的基础上,建立煤与瓦斯突出等级以及基于构造复杂程度定量评价的瓦斯含量GRNN模型。然后用收集到的工程实例样本训练和检验该模型。结果表明,GRNN模型具有很好的预测能力和泛化能力,能较好揭示瓦斯含量和诸影响因素间的关系,可用于煤与瓦斯突出判别以及瓦斯含量预测。同时可以看出,光滑因子的合理选取对于提高GRNN模型的预测精度非常重要,因此,在以后的实际应用中需要不断尝试,找出最合理的光滑因子。 展开更多
关键词 煤与瓦斯突出 构造复杂程度 瓦斯含量 预测 广义回归神经网络(grnn)
在线阅读 下载PDF
基于优化的GRNN和BP神经网络的磁滞曲线拟合对比分析 被引量:17
14
作者 何汉林 孟爱华 +1 位作者 祝甲明 宋红晓 《机电工程》 CAS 2013年第1期116-120,共5页
针对超磁致伸缩材料(GMM)的磁滞非线性,运用广义回归神经网络(GRNN)和前馈BP神经网络分别对GMM的磁滞回线进行非线性逼近,通过网络的训练、预测,与Jiles-Atherton(J-A)模型进行了对比,分析了两种神经网络的逼近效果,给GMM的运用起到了... 针对超磁致伸缩材料(GMM)的磁滞非线性,运用广义回归神经网络(GRNN)和前馈BP神经网络分别对GMM的磁滞回线进行非线性逼近,通过网络的训练、预测,与Jiles-Atherton(J-A)模型进行了对比,分析了两种神经网络的逼近效果,给GMM的运用起到了很好的指导作用。其中,在GRNN神经网络中,由于所取数据有限,为了扩大样本容量,采取交叉验证方法对GRNN神经网络进行了训练,采用循环算法找出了最佳的径向基函数扩展系数SPREAD,并对传统GRNN神经网络进行了优化。研究结果表明:优化后的GRNN神经网络对于磁滞回线的预测精度明显高于BP神经网络。 展开更多
关键词 超磁致伸缩材料 广义回归神经网络 BP神经网络 磁滞曲线拟合
在线阅读 下载PDF
GRNN神经网络在矿区地表变形预测中的应用 被引量:9
15
作者 高彩云 崔希民 +1 位作者 高宁 洪雪倩 《金属矿山》 CAS 北大核心 2014年第3期97-100,共4页
针对矿区地表变形预测受多种因素影响的复杂性、非线性等特点,基于新型广义回归神经网络(GRNN),构建了矿区地表变形预测模型。首先,介绍了GRNN的建模原理,并对影响GRNN网络预测的关键因素进行了讨论;其次,为了提高网络的泛化能力及预测... 针对矿区地表变形预测受多种因素影响的复杂性、非线性等特点,基于新型广义回归神经网络(GRNN),构建了矿区地表变形预测模型。首先,介绍了GRNN的建模原理,并对影响GRNN网络预测的关键因素进行了讨论;其次,为了提高网络的泛化能力及预测精度,采用滚动建模方式对网络进行建模训练,并基于最小均方误差原理提出了交叉验证搜索算法对GRNN网络预测关键参数平滑因子SPREAD进行优选;最后,将优化后的GRNN网络应用于某矿区地表变形预测,并与LM-BP、RBF、回归分析3种模型的预测效果进行了比较,结果表明,GRNN网络泛化能力强、算法稳定,且预测精度较高,适合于矿区地表变形预测。 展开更多
关键词 矿区地表变形 grnn神经网络 滚动建模 交叉验证 预测
在线阅读 下载PDF
煤矿冲击地压预测的PCA-GRNN方法 被引量:13
16
作者 史策 高峰 +1 位作者 陈连城 王连国 《中国安全科学学报》 CAS CSCD 北大核心 2016年第7期119-124,共6页
为更合理有效地解决煤矿开采引起的冲击地压危险性预测问题,以忻州窑煤矿冲击地压事故为工程背景,采用一种数据降维算法—主成分分析法(PCA),对广义回归神经网络(GRNN)的输入样本进行信息压缩,构建冲击地压危险性预测的PCA-GRNN模型。通... 为更合理有效地解决煤矿开采引起的冲击地压危险性预测问题,以忻州窑煤矿冲击地压事故为工程背景,采用一种数据降维算法—主成分分析法(PCA),对广义回归神经网络(GRNN)的输入样本进行信息压缩,构建冲击地压危险性预测的PCA-GRNN模型。通过PCA法提取影响冲击地压强度的煤层厚度、倾角等9个因素,得到冲击地压危险性影响因素的前4个主成分因子表达式,并构建BPNN,GRNN和PCA-BP等另外3种模型,验证PCA-GRNN法预测冲击地压危险性的智能性和泛化能力。结果表明,所建PCA-GRNN模型平均训练误差为3.5%,平均预测误差为3.6%,有很好的预测能力和泛化能力。 展开更多
关键词 冲击地压 主成分分析法(PCA) 广义回归神经网络(grnn) 电磁辐射 预警技术
在线阅读 下载PDF
小波软阈值去噪和GRNN网络在月度负荷预测中的应用 被引量:11
17
作者 刘学琴 吴耀华 崔宝华 《电力系统保护与控制》 EI CSCD 北大核心 2009年第14期59-62,85,共5页
在介绍了小波阈值降噪理论和广义回归神经网络基本理论的基础上,针对电力系统的月负荷数据同时具有趋势增长性和季节波动性的复杂非线性特征,提出了一种月负荷预测新方法。首先对历史数据进行小波软阈值去噪,以横向历史数据和纵向历史... 在介绍了小波阈值降噪理论和广义回归神经网络基本理论的基础上,针对电力系统的月负荷数据同时具有趋势增长性和季节波动性的复杂非线性特征,提出了一种月负荷预测新方法。首先对历史数据进行小波软阈值去噪,以横向历史数据和纵向历史数据作为神经网络的输入,建立了月度负荷预测模型,并将其应用于我国某地区月度负荷预测,结果表明:该模型既具有较好的鲁棒性,预测精度较高且较为稳定,又具有良好的实用性。 展开更多
关键词 月度负荷预测 广义回归神经网络 小波软阈值 去噪
在线阅读 下载PDF
基于自适应GRNN的无线室内定位算法 被引量:13
18
作者 葛柳飞 李克清 戴欢 《计算机工程》 CAS CSCD 北大核心 2016年第6期81-85,90,共6页
室内信号强度波动的随机性使广义回归神经网络(GRNN)难以选择最优参数建立定位模型并预测目标位置。为此,提出一种自适应广义回归神经网络的定位算法。利用改进的人工蜂群算法对广义回归神经网络进行参数优化,并将其应用于无线室内定位... 室内信号强度波动的随机性使广义回归神经网络(GRNN)难以选择最优参数建立定位模型并预测目标位置。为此,提出一种自适应广义回归神经网络的定位算法。利用改进的人工蜂群算法对广义回归神经网络进行参数优化,并将其应用于无线室内定位,建立无线信号特征与目标位置信息的映射关系,利用建立的映射关系预测目标位置,降低信号强度波动的随机性对定位精度的影响。实验结果表明,在12 m×12 m的区域范围内,该算法的平均定位误差为0.65 m,与基于蜂群算法的GRNN以及基于粒子群算法的GRNN相比,该算法的定位准确率分别提高了21.3%和23.1%,且收敛速度较快。与路径损耗模型和BP神经网络相比,该算法的定位准确率分别提高了17.86%和3.1%,能够有效提高定位精度。 展开更多
关键词 信号强度 室内定位 广义回归神经网络 人工蜂群 定位准确率
在线阅读 下载PDF
基于RFOA优化GRNN的水电机组振动预测 被引量:16
19
作者 王继选 胡润志 +3 位作者 管一 张少恺 曹庆皎 王利英 《振动与冲击》 EI CSCD 北大核心 2021年第21期120-126,共7页
针对水电机组振动的非平稳、非线性特点,提出利用改进果蝇算法(RFOA)优化广义回归神经网络模型(RFOA-GRNN)。通过改进果蝇算法的搜索步长和气味浓度判定公式,使该算法的局部寻优能力增强,收敛速度提高。通过8种常用的基准函数对FOA算法... 针对水电机组振动的非平稳、非线性特点,提出利用改进果蝇算法(RFOA)优化广义回归神经网络模型(RFOA-GRNN)。通过改进果蝇算法的搜索步长和气味浓度判定公式,使该算法的局部寻优能力增强,收敛速度提高。通过8种常用的基准函数对FOA算法、DSFOA算法、RFOA算法进行仿真测试,测试结果验证了RFOA算法的有效性。利用三种优化算法优化GRNN的平滑因子,将优化后平滑因子代入GRNN模型对水电机组振动进行预测。结果表明,与FOA-GRNN和DSFOA-GRNN两种预测模型相比,RFOA-GRNN预测模型的预测结果最大相对误差分别降低了99.96%和99.28%。可以得到RFOA-GRNN模型的预测精度和稳定性方面均优于其他两种模型,验证了此模型的有效性。将其应用于水电机组状态趋势预测研究中,可为维护人员提前发现水电机组故障并及时检修进而保证水电机组安全稳定的运行提供保障。 展开更多
关键词 水电机组 改进果蝇优化算法(RFOA) 广义回归神经网络(grnn) 平滑因子 振动预测
在线阅读 下载PDF
广义回归神经网络(GRNN)在AMT挡位判别中的应用 被引量:8
20
作者 杨小辉 徐颖强 +2 位作者 李世杰 王耀锋 张玉同 《机械设计与制造》 北大核心 2009年第5期72-74,共3页
通过分析传统方法研究AMT换档规律存在的问题和神经网络在不能获得精确数学模型的非线性系统中能达到最优控制的特性以及在线学习的能力等,提出基于广义回归神经网络(GRNN)进行AMT的换档规律的研究,并针对某4档轿车机械自动变速器,建立... 通过分析传统方法研究AMT换档规律存在的问题和神经网络在不能获得精确数学模型的非线性系统中能达到最优控制的特性以及在线学习的能力等,提出基于广义回归神经网络(GRNN)进行AMT的换档规律的研究,并针对某4档轿车机械自动变速器,建立该车自动变速两个参数(车速、油门开度)神经网络控制模型,运用Matlab软件进行换档过程的仿真分析。研究结果表明:利用GRNN研究AMT的换档规律过程简单、适应性强等,能够正确有效地进行车辆档位判别。 展开更多
关键词 广义回归神经网络(grnn) 电控机械式自动变速器(AMT) 换挡规律 仿真
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部