The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of ...The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix. The multisection method for solving the generalized eigenproblem applied significantly in many science and engineering domains has not been studied. The parallel region preserving multisection method (PRM for short) for solving generalized eigenproblems of large sparse and real symmetric matrix is presented in this paper. This method not only retains the advantages of the conventional determinant search method (DS for short), but also overcomes its disadvantages such as leaking roots and disconvergence. We have tested the method on the YH 1 vector computer, and compared it with the parallel region preserving determinant search method the parallel region preserving bisection method (PRB for short). The numerical results show that PRM has a higher speed up, for instance, it attains the speed up of 7.7 when the scale of the problem is 2 114 and the eigenpair found is 3, and PRM is superior to PRB when the scale of the problem is large.展开更多
In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseu...In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].展开更多
In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial f...In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.展开更多
In this paper, we analyze the generalized Camassa and Holm (CH) equation by the improved element-free Galerkin (IEFG) method. By employing the improved moving least-square (IMLS) approximation, we derive the for...In this paper, we analyze the generalized Camassa and Holm (CH) equation by the improved element-free Galerkin (IEFG) method. By employing the improved moving least-square (IMLS) approximation, we derive the formulas for the generalized CH equation with the IEFG method. A variational method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Because there are fewer coefficients in the IMLS approximation than in the MLS approximation, and in the IEFG method, fewer nodes are selected in the entire domain than in the conventional EFG method, the IEFG method should result in a higher computing speed. The effectiveness of the IEFG method for the generalized CH equation is investigated by numerical examples in this paper.展开更多
The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not...The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).展开更多
Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NIS...Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.展开更多
This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions an...This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.展开更多
As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs us...As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.展开更多
An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator...An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.展开更多
This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtain...This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method.展开更多
A stabilized and convergent finite element formulation for the generalized Stokes problem is proposed and a posteriori analysis is performed to produce an error indicator. On this basis adaptive numerical method for s...A stabilized and convergent finite element formulation for the generalized Stokes problem is proposed and a posteriori analysis is performed to produce an error indicator. On this basis adaptive numerical method for solying the problem is developed . Numerical calculations are performed to confirm the reliability and effectiveness of the method.展开更多
A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics an...A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics and genetics, where it originated. Many researchers have studied the numerical solutions of the GFE, up to now. In this paper, we introduce an element-free Galerkin (EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics. Compared with other numerical methods, the EFG method for the GFE needs only scattered nodes instead of meshing the domain of the problem. The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. In comparison with the traditional method, numerical solutions show that the new method has higher accuracy and better convergence. Several numerical examples are presented to demonstrate the effectiveness of the method.展开更多
We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition com...We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.展开更多
In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used...In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used to solve such an equation, unstable or even wrong numerical solutions may be obtained due to the violation of the consistency conditions of the moving least-squares (MLS) shape functions. To solve this problem, the EFG method is improved by employing the improved moving least-squares (IMLS) approximation based on the shifted polynomial basis functions. The effectiveness of the IEFG method for the gfKdV equation is investigated by using some numerical examples. Meanwhile, the motion of single solitary wave and the interaction of two solitons are simulated using the IEFG method.展开更多
We consider a differential variational-hemivariational inequality with constraints,in the framework of reflexive Banach spaces.The existence of a unique mild solution of the inequality,together with its stability,was ...We consider a differential variational-hemivariational inequality with constraints,in the framework of reflexive Banach spaces.The existence of a unique mild solution of the inequality,together with its stability,was proved in[1].Here,we complete these results with existence,uniqueness and convergence results for an associated penalty-type method.To this end,we construct a sequence of perturbed differential variational-hemivariational inequalities governed by perturbed sets of constraints and penalty coefficients.We prove the unique solvability of each perturbed inequality as well as the convergence of its solution to the solution of the original inequality.Then,we consider a mathematical model which describes the equilibrium of a viscoelastic rod in unilateral contact.The weak formulation of the model is in a form of a differential variational-hemivariational inequality in which the unknowns are the displacement field and the history of the deformation.We apply our abstract penalty method in the study of this inequality and provide the corresponding mechanical interpretations.展开更多
In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several ki...In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several kinds of exact(new) solutions of the generalized KdV equation are obtained.展开更多
With the rapid development of large-scale regional interconnected power grids,the risk of cascading failures under extreme condi-tions,such as natural disasters and military strikes,has increased significantly.To enha...With the rapid development of large-scale regional interconnected power grids,the risk of cascading failures under extreme condi-tions,such as natural disasters and military strikes,has increased significantly.To enhance the response capability of power systems to extreme events,this study focuses on a method for generator coherency detection.To overcome the shortcomings of the traditional slow coherency method,this paper introduces a novel coherent group identification algorithm based on the theory of nonlinear dynam-ical systems.By analyzing the changing trend of the Euclidean norm of the state variable derivatives in the reduced system,the algorithm can accurately identify the magnitude of the disturbances.Based on the slow coherency methods,the algorithm can correctly recognize coherent generator groups by analyzing system characteristics under varying disturbance magnitudes.This improvement enhances the applicability and accuracy of the coherency detection algorithm under extreme conditions,providing support for emergency control and protection in the power system.Simulations and comparison analyses on IEEE 39-bus system are conducted to validate the accuracy and superiority of the proposed coherent generator group identification method under extreme conditions.展开更多
By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic functio...By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.展开更多
The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectr...The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectrum evaluation method is able to obtain the background-corrected and interference-free net peaks, which is significant for quantization analyses. A variety of analytical parameters and functions to describe the features of the fluorescence spectra of pure elements are used and established, such as the mass absorption coefficient, the Gi factor, and fundamental fluorescence formulas. The FSLS iterative program was compiled in the C language. The content of each component should reach the convergence criterion at the end of the calculations. After a basic theory analysis and experimental preparation, 13 national standard soil samples were detected using a spectrometer to test the feasibility of using the algorithm. The results show that the calculated contents of Ti, Fe, Ni, Cu, and Zn have the same changing tendency as the corresponding standard content in the 13 reference samples. Accuracies of 0.35% and 14.03% are obtained, respectively, for Fe and Ti, whose standard concentrations are 8.82% and 0.578%, respectively. However, the calculated results of trace elements (only tens of lg/g) deviate from the standard values. This may be because of measurement accuracy and mutual effects between the elements.展开更多
文摘The parallel multisection method for solving algebraic eigenproblem has been presented in recent years with the development of the parallel computers, but all the research work is limited in standard eigenproblems of symmetric tridiagonal matrix. The multisection method for solving the generalized eigenproblem applied significantly in many science and engineering domains has not been studied. The parallel region preserving multisection method (PRM for short) for solving generalized eigenproblems of large sparse and real symmetric matrix is presented in this paper. This method not only retains the advantages of the conventional determinant search method (DS for short), but also overcomes its disadvantages such as leaking roots and disconvergence. We have tested the method on the YH 1 vector computer, and compared it with the parallel region preserving determinant search method the parallel region preserving bisection method (PRB for short). The numerical results show that PRM has a higher speed up, for instance, it attains the speed up of 7.7 when the scale of the problem is 2 114 and the eigenpair found is 3, and PRM is superior to PRB when the scale of the problem is large.
基金supported by Scientific Research Fund of Sichuan Provincial Education Department (09ZB102)Scientific Research Fund of Science and Technology Deportment of Sichuan Provincial (2011JYZ011)
文摘In this article, we introduce a hybrid iterative scheme for finding a common element of the set of solutions for a generalized equilibrium problems, the set of common fixed point for a family of infinite k-strict pseudo-contractive mappings, and the set of solutions of the variational inclusion problem with multi-valued maximal monotone mappings and inverse-strongly monotone mappings in Hilbert space. Under suitable conditions, some strong convergence theorems are proved. Our results extends the recent results in G.L.Acedo and H.K.Xu [2], Zhang, Lee and Chan [8], Wakahashi and Toyoda [9], Takahashi and Takahashi [I0] and S. S. Chang, H. W. Joseph Lee and C. K. Chan [II], S.Takahashi and W.Takahashi [12]. Moreover, the method of proof adopted in this article is different from those of [4] and [12].
基金Project supported in part by the National Natural Science Foundation of China(Grant No.11071177)
文摘In this paper, the trial function method is extended to study the generalized nonlinear Schrodinger equation with time- dependent coefficients. On the basis of a generalized traveling wave transformation and a trial function, we investigate the exact envelope traveling wave solutions of the generalized nonlinear Schrodinger equation with time-dependent coefficients. Taking advantage of solutions to trial function, we successfully obtain exact solutions for the generalized nonlinear Schrodinger equation with time-dependent coefficients under constraint conditions.
基金supported by the Natural Science Foundation of Ningbo City,Zhejiang Province,China (Grant Nos. 2012A610038 and 2012A610023)the Natural Science Foundation of Zhejiang Province,China (Grant No. Y6110007)
文摘In this paper, we analyze the generalized Camassa and Holm (CH) equation by the improved element-free Galerkin (IEFG) method. By employing the improved moving least-square (IMLS) approximation, we derive the formulas for the generalized CH equation with the IEFG method. A variational method is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. Because there are fewer coefficients in the IMLS approximation than in the MLS approximation, and in the IEFG method, fewer nodes are selected in the entire domain than in the conventional EFG method, the IEFG method should result in a higher computing speed. The effectiveness of the IEFG method for the generalized CH equation is investigated by numerical examples in this paper.
基金supported by the National Basic Research Program of China (2005CB321701)NSF of mathematics research special fund of Hebei Province(08M005)
文摘The purpose of this article is to develop and analyze least-squares approximations for the incompressible magnetohydrodynamic equations. The major advantage of the least-squares finite element method is that it is not subjected to the so-called Ladyzhenskaya-Babuska-Brezzi (LBB) condition. The authors employ least-squares functionals which involve a discrete inner product which is related to the inner product in H^-1(Ω).
基金Project supported by the Natural Science Foundation of Shandong Province,China (Grant No.ZR2021MF049)Joint Fund of Natural Science Foundation of Shandong Province (Grant Nos.ZR2022LLZ012 and ZR2021LLZ001)。
文摘Readout errors caused by measurement noise are a significant source of errors in quantum circuits,which severely affect the output results and are an urgent problem to be solved in noisy-intermediate scale quantum(NISQ)computing.In this paper,we use the bit-flip averaging(BFA)method to mitigate frequent readout errors in quantum generative adversarial networks(QGAN)for image generation,which simplifies the response matrix structure by averaging the qubits for each random bit-flip in advance,successfully solving problems with high cost of measurement for traditional error mitigation methods.Our experiments were simulated in Qiskit using the handwritten digit image recognition dataset under the BFA-based method,the Kullback-Leibler(KL)divergence of the generated images converges to 0.04,0.05,and 0.1 for readout error probabilities of p=0.01,p=0.05,and p=0.1,respectively.Additionally,by evaluating the fidelity of the quantum states representing the images,we observe average fidelity values of 0.97,0.96,and 0.95 for the three readout error probabilities,respectively.These results demonstrate the robustness of the model in mitigating readout errors and provide a highly fault tolerant mechanism for image generation models.
基金Project supported by the National Natural Science Foundations of China(Grant Nos.10735030,10475055,10675065 and 90503006)the National Basic Research Program of China(Grant No.2007CB814800)
文摘This paper studies the generalized Kawahara equation in terms of the approximate homotopy symmetry method and the approximate homotopy direct method. Using both methods it obtains the similarity reduction solutions and similarity reduction equations of different orders, showing that the approximate homotopy direct method yields more general approximate similarity reductions than the approximate homotopy symmetry method. The homotopy series solutions to the generalized Kawahara equation are consequently derived.
基金supported by Science and Technology Major Project of Shanxi Province,China(No.20201101002)Science and Technology Major Project of China,China(No.2016ZX05043002)+1 种基金National Natural Science Foundation Project of China,China(No.51874319)Science Foundation of China University of Petroleum(Beijing),China(No.2462020QNXZ003)to support part of this work
文摘As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11172093 and 11372102)the Hunan Provincial Innovation Foundation for Postgraduate,China(Grant No.CX2012B159)
文摘An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method.
基金supported by the National Natural Science Foundation of China (Grant No. 10871124)the Innovation Program of the Shanghai Municipal Education Commission,China (Grant No. 09ZZ99)
文摘This paper presents a meshless method for the nonlinear generalized regularized long wave (GRLW) equation based on the moving least-squares approximation. The nonlinear discrete scheme of the GRLW equation is obtained and is solved using the iteration method. A theorem on the convergence of the iterative process is presented and proved using theorems of the infinity norm. Compared with numerical methods based on mesh, the meshless method for the GRLW equation only requires the.scattered nodes instead of meshing the domain of the problem. Some examples, such as the propagation of single soliton and the interaction of two solitary waves, are given to show the effectiveness of the meshless method.
文摘A stabilized and convergent finite element formulation for the generalized Stokes problem is proposed and a posteriori analysis is performed to produce an error indicator. On this basis adaptive numerical method for solying the problem is developed . Numerical calculations are performed to confirm the reliability and effectiveness of the method.
基金supported by the National Natural Science Foundation of China (Grant No. 11072117)the Natural Science Foundation of Ningbo City (Grant Nos. 2012A610038 and 2012A610152)+1 种基金the Scientific Research Fund of Education Department of Zhejiang Province,China (Grant No. Z201119278)K.C. Wong Magna Fund in Ningbo University
文摘A generalized Fisher equation (GFE) relates the time derivative of the average of the intrinsic rate of growth to its variance. The exact mathematical result of the GFE has been widely used in population dynamics and genetics, where it originated. Many researchers have studied the numerical solutions of the GFE, up to now. In this paper, we introduce an element-free Galerkin (EFG) method based on the moving least-square approximation to approximate positive solutions of the GFE from population dynamics. Compared with other numerical methods, the EFG method for the GFE needs only scattered nodes instead of meshing the domain of the problem. The Galerkin weak form is used to obtain the discrete equations, and the essential boundary conditions are enforced by the penalty method. In comparison with the traditional method, numerical solutions show that the new method has higher accuracy and better convergence. Several numerical examples are presented to demonstrate the effectiveness of the method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11190024 and 11474331)
文摘We propose a generalized Lanczos method to generate the many-body basis states of quantum lattice models using tensor-network states (TNS). The ground-state wave function is represented as a linear superposition composed from a set of TNS generated by Lanczos iteration. This method improves significantly the accuracy of the tensor-network algorithm and provides an effective way to enlarge the maximal bond dimension of TNS. The ground state such obtained contains significantly more entanglement than each individual TNS, reproducing correctly the logarithmic size dependence of the entanglement entropy in a critical system. The method can be generalized to non-Hamiltonian systems and to the calculation of low-lying excited states, dynamical correlation functions, and other physical properties of strongly correlated systems.
基金the National Basic Research Program of China(Grant No.2012CB025903)
文摘In this paper, an improved element-free Galerkin (IEFG) method is proposed to solve the generalized fifth-order Korteweg-de Vries (gfKdV) equation. When the traditional element-free Galerkin (EFG) method is used to solve such an equation, unstable or even wrong numerical solutions may be obtained due to the violation of the consistency conditions of the moving least-squares (MLS) shape functions. To solve this problem, the EFG method is improved by employing the improved moving least-squares (IMLS) approximation based on the shifted polynomial basis functions. The effectiveness of the IEFG method for the gfKdV equation is investigated by using some numerical examples. Meanwhile, the motion of single solitary wave and the interaction of two solitons are simulated using the IEFG method.
基金supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement(823731CONMECH)supported by National Natural Science Foundation of China(11671101),supported by National Natural Science Foundation of China(11961074)+2 种基金Guangxi Natural Science Foundation(2021GXNSFAA075022)Project of Guangxi Education Department(2020KY16017)Yulin normal university of scientific research fund for high-level talents(G2019ZK39,G2021ZK06)。
文摘We consider a differential variational-hemivariational inequality with constraints,in the framework of reflexive Banach spaces.The existence of a unique mild solution of the inequality,together with its stability,was proved in[1].Here,we complete these results with existence,uniqueness and convergence results for an associated penalty-type method.To this end,we construct a sequence of perturbed differential variational-hemivariational inequalities governed by perturbed sets of constraints and penalty coefficients.We prove the unique solvability of each perturbed inequality as well as the convergence of its solution to the solution of the original inequality.Then,we consider a mathematical model which describes the equilibrium of a viscoelastic rod in unilateral contact.The weak formulation of the model is in a form of a differential variational-hemivariational inequality in which the unknowns are the displacement field and the history of the deformation.We apply our abstract penalty method in the study of this inequality and provide the corresponding mechanical interpretations.
基金Foundation item: Supported by the National Natural Science Foundation of China(10671182) Supported by the Foundation and Frontier Technology Research of Henan(082300410060)
文摘In this paper, we present a solution methodology to obtain exact solutions of some nonlinear evolution equation by modifying the homogeneous balance method. Based on the modified homogeneous balance method, several kinds of exact(new) solutions of the generalized KdV equation are obtained.
基金supported by National Natural Science Foundation of China(Grant No:52477133)Science and Technology Project of China Southern Power Grid(Grant No.GDKJXM20231178(036100KC23110012)+1 种基金GDKJXM20240389(030000KC24040053))Sanya Yazhou Bay Science and Technology City(Grant No:SKJC-JYRC-2024-66).
文摘With the rapid development of large-scale regional interconnected power grids,the risk of cascading failures under extreme condi-tions,such as natural disasters and military strikes,has increased significantly.To enhance the response capability of power systems to extreme events,this study focuses on a method for generator coherency detection.To overcome the shortcomings of the traditional slow coherency method,this paper introduces a novel coherent group identification algorithm based on the theory of nonlinear dynam-ical systems.By analyzing the changing trend of the Euclidean norm of the state variable derivatives in the reduced system,the algorithm can accurately identify the magnitude of the disturbances.Based on the slow coherency methods,the algorithm can correctly recognize coherent generator groups by analyzing system characteristics under varying disturbance magnitudes.This improvement enhances the applicability and accuracy of the coherency detection algorithm under extreme conditions,providing support for emergency control and protection in the power system.Simulations and comparison analyses on IEEE 39-bus system are conducted to validate the accuracy and superiority of the proposed coherent generator group identification method under extreme conditions.
基金Project supported by the State Key Program for Basic Research of China (Grant No 2004CB418304)the National Natural Science Foundation of China (Grant No 40405010)
文摘By using the modified mapping method, we find some new exact solutions of the generalized Boussinesq equation and the Boussinesq-Burgers equation. The solutions obtained in this paper include Jacobian elliptic function solutions, combined Jacobian elliptic function solutions, soliton solutions, triangular function solutions.
基金supported by the National Key R&D Project of China(No.2017YFC0602100)the National Natural Science Foundation of China(No.41774147)Sichuan Science and Technology Support Program(No.2015GZ0272)
文摘The full-spectrum least-squares(FSLS) method is introduced to perform quantitative energy-dispersive X-ray fluorescence analysis for unknown solid samples.Based on the conventional least-squares principle, this spectrum evaluation method is able to obtain the background-corrected and interference-free net peaks, which is significant for quantization analyses. A variety of analytical parameters and functions to describe the features of the fluorescence spectra of pure elements are used and established, such as the mass absorption coefficient, the Gi factor, and fundamental fluorescence formulas. The FSLS iterative program was compiled in the C language. The content of each component should reach the convergence criterion at the end of the calculations. After a basic theory analysis and experimental preparation, 13 national standard soil samples were detected using a spectrometer to test the feasibility of using the algorithm. The results show that the calculated contents of Ti, Fe, Ni, Cu, and Zn have the same changing tendency as the corresponding standard content in the 13 reference samples. Accuracies of 0.35% and 14.03% are obtained, respectively, for Fe and Ti, whose standard concentrations are 8.82% and 0.578%, respectively. However, the calculated results of trace elements (only tens of lg/g) deviate from the standard values. This may be because of measurement accuracy and mutual effects between the elements.