A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of tar...A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of target motions are modeled by using jump Markovian system(JMS),is presented in this paper.The close-form solution is derived for sequential Monte Carlo implementation of the GLMB filter based on the TBD model.In update,we derive a tractable GLMB density,which preserves the cardinality distribution and first-order moment of the labeled multi-target distribution of interest as well as minimizes the Kullback-Leibler divergence(KLD),to enable the next recursive cycle.The relevant simulation results prove that the proposed multiple-model GLMB-TBD(MM-GLMB-TBD)algorithm based on K-distributed clutter model can improve the detecting and tracking performance in both estimation error and robustness compared with state-of-the-art algorithms for sea clutter background.Additionally,the simulations show that the proposed MM-GLMB-TBD algorithm can accurately output the multitarget trajectories with considerably less computational complexity compared with the adapted dynamic programming based TBD(DP-TBD)algorithm.Meanwhile,the simulation results also indicate that the proposed MM-GLMB-TBD filter slightly outperforms the JMS particle filter based TBD(JMSMeMBer-TBD)filter in estimation error with the basically same computational cost.Finally,the impact of the mismatches on the clutter model and clutter parameter is investigated for the performance of the MM-GLMB-TBD filter.展开更多
本文针对杂波条件下多扩展目标的状态估计,目标个数估计,扩展目标形状估计问题,提出了一种基于标签随机有限集(Labelled random finite sets,L-RFS)框架下多扩展目标跟踪学习算法,该学习算法主要包括两方面:多扩展目标动态建模和多扩展...本文针对杂波条件下多扩展目标的状态估计,目标个数估计,扩展目标形状估计问题,提出了一种基于标签随机有限集(Labelled random finite sets,L-RFS)框架下多扩展目标跟踪学习算法,该学习算法主要包括两方面:多扩展目标动态建模和多扩展目标的跟踪估计.首先,结合广义标签多伯努利滤波器(Generalized labelled multi-Bernoulli,GLMB)建立了扩展目标的量测有限混合模型(Finite mixture models,FMM),利用Gibbs采样和贝叶斯信息准则(Bayesian information criterion,BIC)准则推导出有限混合模型的参数来对多扩展目标形状进行学习,然后采用等效量测方法来替代扩展目标产生的量测,对扩展目标形状采用椭圆逼近建模,实现扩展目标形状与状态的估计.仿真实验表明本文所给的方法能够有效跟踪多扩展目标,并且在目标个数估计方面优于CBMeMBer算法.此外,与标签多伯努利滤波(LMB)计算比较表明:GLMB和LMB算法滤波估计精度接近,二者精度高于CBMeMBer算法.展开更多
针对杂波条件下可分辨群目标的状态估计、目标个数与子群个数估计问题,提出了一种基于标签随机有限集(Label random finite set,L-RFS)框架下的可分辨群目标跟踪算法,该算法主要包括两个方面:可分辨多群目标动态建模和多群目标的跟踪估...针对杂波条件下可分辨群目标的状态估计、目标个数与子群个数估计问题,提出了一种基于标签随机有限集(Label random finite set,L-RFS)框架下的可分辨群目标跟踪算法,该算法主要包括两个方面:可分辨多群目标动态建模和多群目标的跟踪估计.本文工作主要包括:1)结合图论中的邻接矩阵对可分辨群目标运动进行动态建模.2)利用基于L-RFS的广义标签多伯努利滤波(Generalizes label multi-Bernoulli,GLMB)算法对目标的状态和个数进行估计,并且通过估计邻接矩阵得到群的结构和个数估计.3)通过个数不同、结构不同的三个子群目标在二维平面分别做线性和非线性运动进行算法验证.仿真分析表明本文算法能够准确估计出群目标中各目标的状态、个数以及子群的个数,并且能获得目标的航迹估计.展开更多
基金supported by the Fund for Foreign Scholars in University Research and Teaching Programs(B18039)Shaanxi Youth Fund(202J-JC-QN-0668).
文摘A generalized labeled multi-Bernoulli(GLMB)filter with motion mode label based on the track-before-detect(TBD)strategy for maneuvering targets in sea clutter with heavy tail,in which the transitions of the mode of target motions are modeled by using jump Markovian system(JMS),is presented in this paper.The close-form solution is derived for sequential Monte Carlo implementation of the GLMB filter based on the TBD model.In update,we derive a tractable GLMB density,which preserves the cardinality distribution and first-order moment of the labeled multi-target distribution of interest as well as minimizes the Kullback-Leibler divergence(KLD),to enable the next recursive cycle.The relevant simulation results prove that the proposed multiple-model GLMB-TBD(MM-GLMB-TBD)algorithm based on K-distributed clutter model can improve the detecting and tracking performance in both estimation error and robustness compared with state-of-the-art algorithms for sea clutter background.Additionally,the simulations show that the proposed MM-GLMB-TBD algorithm can accurately output the multitarget trajectories with considerably less computational complexity compared with the adapted dynamic programming based TBD(DP-TBD)algorithm.Meanwhile,the simulation results also indicate that the proposed MM-GLMB-TBD filter slightly outperforms the JMS particle filter based TBD(JMSMeMBer-TBD)filter in estimation error with the basically same computational cost.Finally,the impact of the mismatches on the clutter model and clutter parameter is investigated for the performance of the MM-GLMB-TBD filter.
文摘本文针对杂波条件下多扩展目标的状态估计,目标个数估计,扩展目标形状估计问题,提出了一种基于标签随机有限集(Labelled random finite sets,L-RFS)框架下多扩展目标跟踪学习算法,该学习算法主要包括两方面:多扩展目标动态建模和多扩展目标的跟踪估计.首先,结合广义标签多伯努利滤波器(Generalized labelled multi-Bernoulli,GLMB)建立了扩展目标的量测有限混合模型(Finite mixture models,FMM),利用Gibbs采样和贝叶斯信息准则(Bayesian information criterion,BIC)准则推导出有限混合模型的参数来对多扩展目标形状进行学习,然后采用等效量测方法来替代扩展目标产生的量测,对扩展目标形状采用椭圆逼近建模,实现扩展目标形状与状态的估计.仿真实验表明本文所给的方法能够有效跟踪多扩展目标,并且在目标个数估计方面优于CBMeMBer算法.此外,与标签多伯努利滤波(LMB)计算比较表明:GLMB和LMB算法滤波估计精度接近,二者精度高于CBMeMBer算法.