期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
正交矩阵的逆特征值问题 被引量:6
1
作者 孟纯军 胡锡炎 张磊 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2005年第1期116-120,共5页
提出了正交矩阵的逆特征值问题,讨论了该问题有解的充要条件,并给出了解的表达式.同时考虑了解集合对给定矩阵的最佳逼近问题.最后,当该问题无解时,讨论了它的最小二乘解.数值实例说明理论是正确的,算法是可行的.
关键词 正交矩阵 逆特征值问题 最佳逼近 最小二乘解
在线阅读 下载PDF
主子阵约束下广义自反矩阵的广义特征值反问题 被引量:3
2
作者 周硕 韩明花 季本明 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2013年第6期1029-1036,共8页
利用矩阵的奇异值分解和商奇异值分解,建立子矩阵约束下广义特征值反问题的广义自反解存在的充分必要条件,并给出通解的表达式.对任意给定矩阵的最佳逼近问题,得到了最佳逼近广义自反解,并对最佳逼近解进行扰动分析.
关键词 子矩阵约束 广义特征值反问题 广义自反解 最佳逼近 扰动分析
在线阅读 下载PDF
哈密顿矩阵的逆特征值问题 被引量:3
3
作者 孟纯军 胡锡炎 《数学物理学报(A辑)》 CSCD 北大核心 2007年第3期442-448,共7页
该文探讨了哈密顿矩阵的逆特征值问题,得到了有解的充要条件、通解的表达式以及最小范数解.并给出了最佳逼近解的求法.给出了相应的算法,数值实例说明算法是可行的。
关键词 逆特征值问题 哈密顿矩阵 奇异值分解 最佳逼近解
在线阅读 下载PDF
基于正交投影方法的二次特征值反问题及其最佳逼近解 被引量:1
4
作者 周硕 白媛 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第1期33-37,共5页
考虑二次特征值反问题的广义中心对称解(广义反中心对称解)及其最佳逼近问题,应用矩阵的正交投影方法,给出矩阵方程AX+BY+CZ=0的解及其最佳逼近问题.利用广义中心对称矩阵(广义反中心对称矩阵)的性质导出了该问题有广义中心对称解(广义... 考虑二次特征值反问题的广义中心对称解(广义反中心对称解)及其最佳逼近问题,应用矩阵的正交投影方法,给出矩阵方程AX+BY+CZ=0的解及其最佳逼近问题.利用广义中心对称矩阵(广义反中心对称矩阵)的性质导出了该问题有广义中心对称解(广义反中心对称解)的条件及有解情况下的通解表达式,并证明了最佳逼近问题解的存在性与唯一性,得到了最佳逼近解的表达式. 展开更多
关键词 二次特征值反问题 广义中心对称矩阵 最佳逼近解 正交投影方法
在线阅读 下载PDF
低阶对称双随机矩阵逆特征值问题的通解
5
作者 杨尚俊 《安徽大学学报(自然科学版)》 CAS 北大核心 2014年第4期1-8,共8页
对给定的实或复n-重Λ={λ1,…,λn},决定是否存在以Λ为谱的非负(随机)矩阵的问题称为非负(随机)矩阵逆特征值问题,这一直是非负矩阵理论中尚未完全解决的一个研究热点.作者曾对n∈{2,3,4,5},研究n阶双随机矩阵逆特征值问题有解的充分... 对给定的实或复n-重Λ={λ1,…,λn},决定是否存在以Λ为谱的非负(随机)矩阵的问题称为非负(随机)矩阵逆特征值问题,这一直是非负矩阵理论中尚未完全解决的一个研究热点.作者曾对n∈{2,3,4,5},研究n阶双随机矩阵逆特征值问题有解的充分条件并给出相应解的公式.最近,又对任意正整数n,先给出行和为常数的对称矩阵的逆特征值问题的充要条件和解的公式,后给出对称随机矩阵逆特征值问题有解的两种充分条件和解的公式.论文在提出任意阶对称随机矩阵逆特征值问题通解的概念和3阶对称随机矩阵逆特征值问题完全通解的概念之后,首先给出3阶对称随机矩阵逆特征值问题存在完全通解的充要条件和完全通解的公式;其次给出3阶对称随机矩阵逆特征值问题存在通解的充要条件和通解的公式;最后给出4阶对称随机矩阵逆特征值问题有解的几种充分条件和相应解的公式. 展开更多
关键词 逆特征值问题的通解 对称双随机矩阵逆特征值问题 特殊正交矩阵
在线阅读 下载PDF
带子矩阵约束的二次逆特征值问题的最小二乘埃尔米特广义斜哈密顿矩阵迭代解
6
作者 杨娇 杨吉 +1 位作者 黄光鑫 尹凤 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第2期250-256,共7页
针对带子矩阵约束的二次逆特征值问题的最小二乘埃尔米特广义斜哈密顿结构矩阵解问题,给出了一种共枙梯度迭代算法。首先提出了带子矩阵约束的二次逆特征值问题的最小二乘问题及其最佳逼近问题;然后分别给出了基于共轭梯度的迭代算法,... 针对带子矩阵约束的二次逆特征值问题的最小二乘埃尔米特广义斜哈密顿结构矩阵解问题,给出了一种共枙梯度迭代算法。首先提出了带子矩阵约束的二次逆特征值问题的最小二乘问题及其最佳逼近问题;然后分别给出了基于共轭梯度的迭代算法,证明了算法的收敛性。对于任意初始约束矩阵,在不存在舍入误差的情况下,用该迭代算法可以在有限步迭代中得到迭代解。最后,给出了一个数值实例,数值实例证明了所提算法的有效性。 展开更多
关键词 二次逆特征值问题 最佳逼近问题 埃尔米特广义斜哈密顿解 子矩阵约束
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部