期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Progressive failure processes of reinforced slopes based on general particle dynamic method 被引量:4
1
作者 赵毅 周小平 钱七虎 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第10期4049-4055,共7页
In order to resolve grid distortions in finite element method(FEM), the meshless numerical method which is called general particle dynamics(GPD) was presented to simulate the large deformation and failure of geomateri... In order to resolve grid distortions in finite element method(FEM), the meshless numerical method which is called general particle dynamics(GPD) was presented to simulate the large deformation and failure of geomaterials. The Mohr-Coulomb strength criterion was implemented into the code to describe the elasto-brittle behaviours of geomaterials while the solid-structure(reinforcing pile) interaction was simulated as an elasto-brittle material. The Weibull statistical approach was applied to describing the heterogeneity of geomaterials. As an application of general particle dynamics to slopes, the interaction between the slopes and the reinforcing pile was modelled. The contact between the geomaterials and the reinforcing pile was modelled by using the coupling condition associated with a Lennard-Jones repulsive force. The safety factor, corresponding to the minimum shear strength reduction factor "R", was obtained, and the slip surface of the slope was determined. The numerical results are in good agreement with those obtained from limit equilibrium method and finite element method. It indicates that the proposed geomaterial-structure interaction algorithm works well in the GPD framework. 展开更多
关键词 general particle dynamic algorithm(GPD) slope stability progressive failure process geomaterial-structure interaction
在线阅读 下载PDF
基于果蝇算法优化广义回归神经网络的机枪枪管初速衰减建模与预测 被引量:12
2
作者 曹岩枫 徐诚 《兵工学报》 EI CAS CSCD 北大核心 2017年第1期1-8,共8页
机枪枪管初速衰减预测是一个复杂的非线性问题。广义回归神经网络方法被广泛应用于非线性问题的建模,但其平滑因子取值对神经网络的预测性能有较大影响。采用果蝇算法对广义回归神经网络的参数进行优化选取,提出了基于果蝇算法优化广义... 机枪枪管初速衰减预测是一个复杂的非线性问题。广义回归神经网络方法被广泛应用于非线性问题的建模,但其平滑因子取值对神经网络的预测性能有较大影响。采用果蝇算法对广义回归神经网络的参数进行优化选取,提出了基于果蝇算法优化广义回归神经网络的机枪枪管初速衰减建模方法。基于机枪枪管初速衰减试验数据,建立在不同使用环境下随着累计射弹量的增加,以初速降为特征量的机枪枪管初速衰减预测模型,预测结果与试验结果基本一致,证实了所提方法的可行性。通过与未经优化的广义回归神经网络方法和反向传播神经网络方法建立的预测模型进行比较,其性能明显优于另外两种方法,验证了基于果蝇算法优化的广义回归神经网络方法在建立机枪枪管初速衰减模型中的有效性。 展开更多
关键词 兵器科学与技术 果蝇算法 广义回归神经网络 初速衰减 预测模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部