期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
Trend of Developing Aqueous Liquid and Gel Electrolytes for Sustainable,Safe,and High‑Performance Li‑Ion Batteries 被引量:2
1
作者 Donghwan Ji Jaeyun Kim 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第1期17-34,共18页
Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery... Current lithium-ion batteries(LIBs)rely on organic liquid electrolytes that pose significant risks due to their flammability and toxicity.The potential for environmental pollution and explosions resulting from battery damage or fracture is a critical concern.Water-based(aqueous)electrolytes have been receiving attention as an alternative to organic electrolytes.However,a narrow electrochemicalstability window,water decomposition,and the consequent low battery operating voltage and energy density hinder the practical use of aqueous electrolytes.Therefore,developing novel aqueous electrolytes for sustainable,safe,high-performance LIBs remains challenging.This Review first commences by summarizing the roles and requirements of electrolytes–separators and then delineates the progression of aqueous electrolytes for LIBs,encompassing aqueous liquid and gel electrolyte development trends along with detailed principles of the electrolytes.These aqueous electrolytes are progressed based on strategies using superconcentrated salts,concentrated diluents,polymer additives,polymer networks,and artificial passivation layers,which are used for suppressing water decomposition and widening the electrochemical stability window of water of the electrolytes.In addition,this Review discusses potential strategies for the implementation of aqueous Li-metal batteries with improved electrolyte–electrode interfaces.A comprehensive understanding of each strategy in the aqueous system will assist in the design of an aqueous electrolyte and the development of sustainable and safe high-performance batteries. 展开更多
关键词 Lithium-ion battery(LIB) Aqueous electrolyte gel electrolyte Electrochemical stability window Li dendrite
在线阅读 下载PDF
In Situ Polymer Gel Electrolyte in Boosting Scalable Fibre Lithium Battery Applications
2
作者 Jie Luo Qichong Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期170-173,共4页
The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a... The poor interfacial stability not only deteriorates fibre lithium-ion batteries(FLBs)performance but also impacts their scalable applications.To efficiently address these challenges,Prof.Huisheng Peng team proposed a generalized channel structures strategy with optimized in situ polymerization technology in their recent study.The resultant FLBs can be woven into different-sized powering textiles,providing a high energy density output of 128 Wh kg^(-1) and simultaneously demonstrating good durability even under harsh conditions.Such a promising strategy expands the horizon in developing FLB with particular polymer gel electrolytes,and significantly ever-deepening understanding of the scaled wearable energy textile system toward a sustainable future. 展开更多
关键词 High-performance fibre lithium batteries gel electrolytes Channel structures Stable interface Scalable application
在线阅读 下载PDF
A symmetric MnO_2/MnO_2 flexible solid state supercapacitor operating at 1.6V with aqueous gel electrolyte 被引量:5
3
作者 Nilesh R.Chodankar Deepak P.Dubal +1 位作者 Girish S.Gund Chandrakant D.Lokhande 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第3期463-471,共9页
The demand of microelectronic devices postulated high energetic flexible energy storage devices. Flexible solid state supercapacitor is flawless possible candidate to fulfill the requirement of microelectronic devices... The demand of microelectronic devices postulated high energetic flexible energy storage devices. Flexible solid state supercapacitor is flawless possible candidate to fulfill the requirement of microelectronic devices. This investigation provides practical evidence of the use of flexible solid state supercapacitors based on MnOelectrodes with polyvinylpyrrolidone(PVP)-Li ClOgel electrolyte. Initially, different acid mediated growths of MnOhave been carried. Later, the electrochemical performances of MnOelectrodes have been carried out. Impressively, the fabricated symmetric flexible solid state supercapacitor(FSS-SC) device demonstrates the highest operating potential window of 1.6 V with extended cycling stability. Moreover, the cell exhibits high energy density of 23 Wh/kg at power density of 1.9 k W/kg. It is interesting to note that the device shows excellent flexibility upon bending at angle of 180° for number of times. These results clearly evidenced those symmetric FSS-SC devices based on MnOelectrodes are promising energy storage devices for microelectronic applications. 展开更多
关键词 MnO_2 thin film Polymer gel electrolyte Flexible-all-solid-state supercapacitors
在线阅读 下载PDF
Low-temperature and high-voltage planar micro-supercapacitors based on anti-freezing hybrid gel electrolyte 被引量:1
4
作者 Manning Chen Xiaoyu Shi +7 位作者 Xiaolei Wang Hanqing Liu Sen Wang Caixia Meng Yu Liu Liangzhu Zhang Yuanyuan Zhu Zhong-Shuai Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第9期195-202,I0006,共9页
Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes l... Micro-supercapacitors(MSCs)are considered as highly competitive power sources for miniaturized electronics.However,narrow voltage window and poor anti-freezing properties of MSCs in conventional aqueous electrolytes lead to low energy density and limited environmental adaption.Herein,we report the construction of low-temperature and high-energy-density MSCs based on anti-freezing hybrid gel electrolytes(HGE)through introducing ethylene glycol(EG)additives into aqueous LiCl electrolyte.Since EG partially destroys hydrogen bond network among water molecules,the HGE exhibits maximum electrochemical stability window of 2.7 V and superior anti-freezing features with a glass transition temperature of-62.8℃.Further,the optimized MSCs using activated carbon microelectrodes possess impressive volumetric capacitance of 28.9 F cm^(-3)and energy density of 10.3 mWh cm^(-3)in the voltage of 1.6 V,2.6 times higher than MSCs tested in 1.2 V.Importantly,the MSCs display 68.3%capacitance retention even at-30℃ compared to the value at 25℃,and ultra-long cyclability with 85.7%of initial capacitance after 15,000 times,indicating extraordinary low-temperature performance.Besides,our devices offer favorable flexibility and modular integration.Therefore,this work provides a general strategy of realizing flexible,safe and anti-freezing microscale power sources,holding great potential towards subzero-temperature microelectronic applications. 展开更多
关键词 Hybrid gel electrolyte Micro-supercapacitors Low temperature High voltage Graphene
在线阅读 下载PDF
Microzone-explosion synthesis of porous carbon electrodes for advanced aqueous solid-state supercapacitors with a high-voltage gel electrolyte
5
作者 Yongxu Du Wei Liu +8 位作者 Yongpeng Cui Hongguang Fan Yuan Zhang Tianqi Wang Huanlei Wang Yongcheng Jin Shuang Liu Wenting Feng Ming Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第9期95-103,共9页
A new microzone-combustion synthesis is proposed for preparing S, N-doped hierarchically porous carbons(CAC-CN) with a novel mixed microstructure of sp~2 short-range order area and sp~3 defective area,achieving a coex... A new microzone-combustion synthesis is proposed for preparing S, N-doped hierarchically porous carbons(CAC-CN) with a novel mixed microstructure of sp~2 short-range order area and sp~3 defective area,achieving a coexistence of high conductivity and high capacitance as well as good access for electrolyte.By engineering ‘‘water in salts" into a polymer matrix, a high-voltage(2.5 V) aqueous gel electrolyte(HGWIS) is prepared and used to construct an aqueous solid-state SCs by in situ polymerization between the electrodes. The good match of CAC-CN electrode and HG-WIS electrolyte endows the assembled devices with superior high energy density and excellent capacitance retention, also a good temperature robustness, as well a high flexibility in 0-180° bending cycles. This study indicates that the collaborative design strategy of electrode materials and electrolyte would be great potential in exploring advanced aqueous solid-state SCs. 展开更多
关键词 Porous carbon S N-DOPING Microzone-explosion gel electrolyte SUPERCAPACITOR
在线阅读 下载PDF
Solid-state Al-air battery with an ethanol gel electrolyte
6
作者 Yifei Wang Wending Pan +3 位作者 Kee Wah Leong Shijing Luo Xiaolong Zhao Dennis Y.C.Leung 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期1117-1127,共11页
Hydrogel electrolyte is especially suitable for solid-state Al-air batteries targeted for various portable applications, which may, however, lead to continuous Al corrosion during battery standby. To tackle this issue... Hydrogel electrolyte is especially suitable for solid-state Al-air batteries targeted for various portable applications, which may, however, lead to continuous Al corrosion during battery standby. To tackle this issue, an ethanol gel electrolyte is developed for Al-air battery for the first time in this work, by using KOH as solute and polyethylene oxide as gelling agent. The ethanol gel is found to effectively inhibit Al corrosion compared with the water gel counterpart, leading to stable Al storage. When assembled into an Al-air battery, the ethanol gel electrolyte achieves a much improved discharge lifetime and specific capacity, which are 5.3 and 4.1 times of the water gel electrolyte at 0.1 mA cm^(-2), respectively.By studying the gel properties, it is found that a lower ethanol purity can improve the battery power output, but at the price of decreased discharge efficiency. On the contrary, a higher polymer concentration will decrease the power output, but can bring extra benefit to the discharge efficiency. As for the gel thickness, a moderate value of 1 mm is preferred to balance the power output and energy efficiency. Finally, to cater the increasing market of flexible electronics, a flexible Al-air battery is developed by impregnating the ethanol gel into a paper substrate, which can function normally even under serious deformation or damage. 展开更多
关键词 Al-air battery gel electrolyte Ethanol gel Al corrosion Polyethylene oxide
在线阅读 下载PDF
A series of conducting gel electrolytes for quasi-solid-state quantum dot-sensitized solar cells with boosted electron transfer processes
7
作者 Qiming Yang Wen Yang +1 位作者 Jialong Duan Peizhi Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期335-341,共7页
To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective b... To pursue electron-generation stability with no sacrifice of photovoltaic performance has been a persistent objective for all kinds of solar cells. Here, we demonstrate the experimental realization of this objective by quasi-solid-state quantum dot-sensitized solar cells from a series of conducting gel electrolytes composed of polyacrylamide(PAAm) matrix and conductive polymers [polyaniline(PANi), polypyrrole(PPy) or polythiophene(PT)]. The reduction of Sx2- occurred in both interface and three dimensional framework of conducting gel electrolyte as a result of the electrical conduction of PANi, PPy and PT toward refluxed electrons from external circuit to Pt electrode. The resulting solar cells can yield the solarto-electrical conversion efficiency of 2.33%, 2.25% and 1.80% for PANi, PPy and PT based gel electrolytes,respectively. Those solar cells possessed much higher efficiency than that of 1.74% based on pure PAAm gel electrolyte owing to the enhanced kinetics for Sx2- ? S2- conversion. More importantly, the stability of quasi-solid-state solar cell is significantly advanced, arising from the localization of liquid electrolyte into the three dimensional framework and therefore reduced leakage and volatilization. 展开更多
关键词 Quantum dot-sensitized solar cells Conducting gel electrolyte Charge transfer Stability Micropomus structure
在线阅读 下载PDF
Molecule‑Level Multiscale Design of Nonflammable Gel Polymer Electrolyte to Build Stable SEI/CEI for Lithium Metal Battery
8
作者 Qiqi Sun Zelong Gong +13 位作者 Tao Zhang Jiafeng Li Xianli Zhu Ruixiao Zhu Lingxu Wang Leyuan Ma Xuehui Li Miaofa Yuan Zhiwei Zhang Luyuan Zhang Zhao Qian Longwei Yin Rajeev Ahuja Chengxiang Wang 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期404-423,共20页
The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int... The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode. 展开更多
关键词 Anchoring effect Nonflammable gel electrolyte In situ cross-linked Electrode-electrolyte interface Li metal battery
在线阅读 下载PDF
Bifunctional TiO_(2-x)nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries 被引量:1
9
作者 Yixin Wu Zhen Chen +6 位作者 Yang Wang Yu Li Chunxing Zhang Yihui Zhu Ziyu Yue Xin Liu Minghua Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期437-448,I0011,共13页
Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(L... Exploration of advanced gel polymer electrolytes(GPEs)represents a viable strategy for mitigating dendritic lithium(Li)growth,which is crucial in ensuring the safe operation of high energy density Li metal batteries(LMBs).Despite this,the application of GPEs is still hindered by inadequate ionic conductivity,low Li^(+)transference number,and subpar physicochemical properties.Herein,Ti O_(2-x)nanofibers(NF)with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs.Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of Ti O_(2-x)NF accelerate the dissociation of Li PF_6,promote the rapid transfer of free Li^(+),and influence the formation of Li F-enriched solid electrolyte interphase.Consequently,the composite GPEs demonstrate enhanced ionic conductivity(1.90m S cm^(-1)at room temperature),higher lithium-ion transference number(0.70),wider electrochemical stability window(5.50 V),superior mechanical strength,excellent thermal stability(210℃),and improved compatibility with lithium,resulting in superior cycling stability and rate performance in both Li||Li,Li||Li Fe PO_(4),and Li||Li Ni_(0.8)Co_(0.1)Mn_(0.1)O_(2)cells.Overall,the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated,thus,it is anticipated to shed new light on designing high-performance GPEs LMBs. 展开更多
关键词 Nanofibers fillers Oxygen vacancies gel polymer electrolytes Lithium metal batteries
在线阅读 下载PDF
Interfacial fusion-enhanced 11 μm-thick gel polymer electrolyte for high-performance lithium metal batteries
10
作者 Ying Jiang Xinyue Hong +3 位作者 Peng Huang Jing Shi Wen Yan Chao Lai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期58-66,共9页
In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herei... In the pursuit of ultrathin polymer electrolyte(<20 μm) for lithium metal batteries, achieving a balance between mechanical strength and interfacial stability is crucial for the longevity of the electrolytes.Herein, 11 μm-thick gel polymer electrolyte is designed via an integrated electrode/electrolyte structure supported by lithium metal anode. Benefiting from an exemplary superiority of excellent mechanical property, high ionic conductivity, and robust interfacial adhesion, the in-situ formed polymer electrolyte reinforced by titanosiloxane networks(ISPTS) embodies multifunctional roles of physical barrier, ionic carrier, and artificial protective layer at the interface. The potent interfacial interactions foster a seamless fusion of the electrode/electrolyte interfaces and enable continuous ion transport. Moreover, the built-in ISPTS electrolyte participates in the formation of gradient solid-electrolyte interphase(SEI) layer, which enhances the SEI's structural integrity against the strain induced by volume fluctuations of lithium anode.Consequently, the resultant 11 μm-thick ISPTS electrolyte enables lithium symmetric cells with cycling stability over 600 h and LiFePO_(4) cells with remarkable capacity retention of 96.6% after 800 cycles.This study provides a new avenue for designing ultrathin polymer electrolytes towards stable, safe,and high-energy–density lithium metal batteries. 展开更多
关键词 Ultrathin gel polymer electrolyte Integrated electrode/electrolyte structure Quasi-solid-state lithium metal battery Solid-electrolyte interphase
在线阅读 下载PDF
Designing Conformal Electrode-electrolyte Interface by Semi-solid NaK Anode for Sodium Metal Batteries
11
作者 YIN Chunsen CHEN Zeyuan WANG Xiuli 《材料科学与工程学报》 CAS CSCD 北大核心 2024年第4期533-543,共11页
Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interf... Solid-state Na metal batteries(SSNBs),known for its low cost,high safety,and high energy density,hold a significant position in the next generation of rechargeable batteries.However,the urgent challenge of poor interfacial contact in solid-state electrolytes has hindered the commercialization of SSNBs.Driven by the concept of intimate electrode-electrolyte interface design,this study employs a combination of NaK alloy and carbon nanotubes to prepare a semi-solid NaK(NKC)anode.Unlike traditional Na anodes,the paintable paste-like NKC anode exhibits superior adhesion and interface compatibility with both current collectors and gel electrolytes,significantly enhancing the intimate contact of electrode-electrolyte interface.Additionally,the filling of SiO_(2)nanoparticles improves the wettability of NaK alloy on gel polymer electrolytes,further achieving a conformal interface contact.Consequently,the overpotential of the NKC symmetric cell is markedly lower than that of the Na symmetric cell when subjected to a long cycle of 300 h.The full cell coupled with Na_(3)V_(3)(PO_(4))_(2)cathodes had an initial discharge capacity of 106.8 mAh·g^(-1)with a capacity retention of 89.61%after 300 cycles,and a high discharge capacity of 88.1 mAh·g^(-1)even at a high rate of 10 C.The outstanding electrochemical performance highlights the promising application potential of the NKC electrode. 展开更多
关键词 Solid-state Na metal battery NaK alloy gel electrolyte electrode-electrolyte interface dendrite free anode
在线阅读 下载PDF
High-performance PVDF-HFP based gel polymer electrolyte with a safe solvent in Li metal polymer battery 被引量:13
12
作者 Jing Jie Yulong Liu +6 位作者 Lina Cong Bohao Zhang Wei Lu Xinming Zhang Jun Liu Haiming Xie Liqun Sun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第10期80-88,共9页
Poly(vinylidenefluoride-co-hexafluoropropylene)(PVDF-HFP)based gel polymer electrolytes are widely studied owing to their electrochemical stability and high dielectric constant.However,most gel polymer electrolytes sh... Poly(vinylidenefluoride-co-hexafluoropropylene)(PVDF-HFP)based gel polymer electrolytes are widely studied owing to their electrochemical stability and high dielectric constant.However,most gel polymer electrolytes show unsatisfied safety and interface compatibility due to excessive absorption of volatile and flammable liquid solvents.Herein,by using a safe solvent(N-methyl-2-pyrrolidone)with higher boiling(203℃)and flash points(95℃),we initiatively fabricate a flexible PVDF-HFP based gel polymer electrolyte.The obtained gel polymer electrolyte demonstrates a high ionic conductivity of 7.24×10^−4 S cm−1,an electrochemical window of 5.2 V,and a high lithium transference number of 0.57.As a result,the synthesized polymer electrolyte exhibits a capacity retention of 70%after 500 cycles at 0.5 C,and a discharge capacity of 86 mAh g−1 even at a high current rate of 10 C for LiFePO4 based Li metal batteries.Moreover,a stable Li plating/stripping for more than 500 h is achieved under 0.1 mAh at both room temperature and 70℃.Our results indicate that the PVDF-HFP polymer electrolyte is promising for manufacturing safe and high-performance Li metal polymer batteries. 展开更多
关键词 gel polymer electrolyte N-METHYL-2-PYRROLIDONE Interface stability Li-ion conduction path
在线阅读 下载PDF
Thermotolerant and fireproof gel polymer electrolyte toward high-performance and safe lithium-ion battery 被引量:10
13
作者 Man-Cheng Long Ting Wang +4 位作者 Ping-Hui Duan You Gao Xiu-Li Wang Gang Wu Yu-Zhong Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期9-18,共10页
Poly(ethylene oxide)(PEO)and its derivatives based gel polymer electrolytes(GPEs)are severely limited in advanced and safe lithium-ion batteries(LIBs)owing to the intrinsically high flammability of liquid electrolytes... Poly(ethylene oxide)(PEO)and its derivatives based gel polymer electrolytes(GPEs)are severely limited in advanced and safe lithium-ion batteries(LIBs)owing to the intrinsically high flammability of liquid electrolytes and PEO.Directly adding flame retardants to the GPEs can suppress their flammability and thus improve the safety of LIBs,but results in deteriorative electrochemical performance.Herein,a novel GPE with chemically bonded flame retardant(i.e.diethyl vinylphosphonate)in cross-linked polyethylene glycol diacrylate matrix,featuring both high-safety and high-performance,is designed.This as-prepared GPE storing the commercial 1 mol L^(-1) LiPF6 electrolyte resists high temperature of 200℃and cannot be ignited as well as possesses a high ionic conductivity(0.60 m S cm^(-1))and good compatibility with lithium.Notably,the LiFePO_(4)/Li battery with this GPE delivers a satisfactory capacity of 142.2 m A h g^(-1) and a superior cycling performance with a capacity retention of 96.3%and a coulombic efficiency of close to 100%for 350 cycles at 0.2 C under ambient temperature.Furthermore,the battery can achieve steady charge–discharge for 100 cycles with a coulombic efficiency of 99.5%at 1 C under 80℃and run normally even at a high temperature of 150℃or under the exposure to butane flame.Differential scanning calorimetry manifests significantly improved battery safety compared to commercial battery systems.This work provides a new pathway for developing next-generation advanced LIBs with enhanced performance and high safety. 展开更多
关键词 gel polymer electrolyte Poly(ethylene oxide) Flame retardant Vinylphosphonate Lithium-ion batteries
在线阅读 下载PDF
A novel permselective organo-polysulfides/PVDF gel polymer electrolyte enables stable lithium anode for lithium–sulfur batteries 被引量:7
14
作者 Yan-Qiu Shen Fang-Lei Zeng +4 位作者 Xin-Yu Zhou An-bang Wang Wei-kun Wang Ning-Yi Yuan Jian-Ning Ding 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第9期267-276,I0008,共11页
Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Her... Lithium-sulfur(Li-S)battery can satisfy the need of the future power battery market because of its high energy density,but the hidden dangers caused by lithium anode have seriously hindered their commercialization.Herein,an innovative gel polymer electrolyte(GPE)composed of polyvinylidene fluoride(PVDF)and organo-polysulfide polymer(PSPEG)is proposed,which could be used in semisolid-state Li-S batteries for protection of Li anodes.Particularly,organo-polysulfide polymer could chemically/electrochemically generate both inorganic and organic components simultaneously in-situ once contacting fresh Li metal surface and/or during discharging processes.And these inorganic/organic components could participate in the formation of the SEI layer and finally constitute a stable and flexible hybrid SEI layer on the surface of Li metal anode.Moreover,the organic components were permselective to lithium ions against anions.Therefore,PVDF/PSPEG GPE ensures the ideal chemical and electrochemical properties for Li-S batteries.Our work demonstrates an effective solution to solve the problems about Li anodes and contributes to the development of the safe Li metal batteries. 展开更多
关键词 gel polymer electrolyte Organo-polysulfides Lithium dendrite Solid electrolyte interphase Lithium-sulfur battery
在线阅读 下载PDF
Research progress on gel polymer electrolytes for lithium-sulfur batteries 被引量:7
15
作者 Jie Qian Biyu Jin +3 位作者 Yuanyuan Li Xiaoli Zhan Yang Hou Qinghua Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期420-437,共18页
Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced s... Lithium-sulfur(Li-S)batteries have become a promising candidate for advanced energy storage system owing to low cost and high theoretical specific energy.In the last decade,in pursuit of Li-S batteries with enhanced safety and energy density,the investigation on the electrolytes has leaped form liquid organic electrolytes to solid polymer ones.However,such solid-state Li-S battery system is greatly limited by unfavorable ionic conductivity,poor interfacial contact and narrow electrochemical windows on account of the absence of any liquid components.To address these issues,gel polymer electrolytes(GPEs),the incorporation of liquid electrolytes into solid polymer matrixes,have been newly developed.Although the excellent ionic transport and low interfacial resistance provided by GPEs have prompted numerous researchers to make certain progress on high-performance Li-S coins,a comprehensive review on GPEs for Li-S batteries remains vacant.Herein,this review focuses on recent development and progress on GPEs in view of their physical and chemical properties for the applications in Li-S batteries.Studies on the components including solid hosts,liquid solutions and fillers of GPEs are systematically summarized with particular emphasis on the relationship between components and performance.Finally,current challenges and directional outlook for fabricating GPEs-based Li-S batteries with outstanding performance are outlined. 展开更多
关键词 Lithium-sulfur batteries gel polymer electrolytes Solid hosts Liquid solutions
在线阅读 下载PDF
A lithiated gel polymer electrolyte with superior interfacial performance for safe and long-life lithium metal battery 被引量:2
16
作者 Jia-Jia Yuan Chuang-Chao Sun +6 位作者 Li-Feng Fang You-Zhi Song Yan Yan Ze-Lin Qiu Yu-Jie Shen Han-Ying Li Bao-Ku Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期313-322,共10页
Rechargeable lithium metal batteries(LMBs)have gained much attention recently.However,the short lifespan and safety issues restrict their commercial applications.Here we report a novel gel polymer electrolyte(GPE)base... Rechargeable lithium metal batteries(LMBs)have gained much attention recently.However,the short lifespan and safety issues restrict their commercial applications.Here we report a novel gel polymer electrolyte(GPE)based on lithiated poly(vinyl chloride-r-acrylic acid)(PVCAALi)to realize dendritesuppressing and long-term stable lithium metal cycling.PVC chains ensure the quick gelation process and high electrolyte uptake,and lithiated PAA segments enable the increase of mechanical strength,acceleration of lithium-ion transmission and improvement of interfacial compatibility.PVCAALi GPE showed much higher mechanical strength compared with other free-standing GPEs in previous works.It displays a superior ionic conductivity of 1.50 m S cm^(-1) and a high lithium-ion transference number of 0.59 at room temperature.Besides,the lithiated GPE exhibits excellent interfacial compatibility with lithium metal anodes.Lithium symmetrical cells with PVCAALi GPE yield low hysteresis of 50 m V over1000 h at 1.0 m A cm^(-2).And the possible mechanism of the lithiated GPE with improved lithium-ion transfer and interfacial property was discussed.Accordingly,both the Li4Ti5O12/Li and lithium-sulfur(Li-S)cells assembled with PVCAALi GPE show outstanding electrochemical performance,retaining high discharge capacities of 133.8 m Ah g^(-1) and 603.8 m Ah g^(-1) over 200 cycles,respectively.This work proves excellent application potential of the highly effective and low-cost PVCAALi GPE in safe and long-life LMBs. 展开更多
关键词 LITHIATION gel polymer electrolyte Lithium dendrite Safety Lithium metal battery
在线阅读 下载PDF
A UV cross-linked gel polymer electrolyte enabling high-rate and high voltage window for quasi-solid-state supercapacitors 被引量:1
17
作者 Yuge Bai Chao Yang +6 位作者 Boheng Yuan Hongjie Li Weimeng Chen Haosen Yin Bin Zhao Fei Shen Xiaogang Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期41-50,I0002,共11页
Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfie... Serving as a promising alternative to liquid electrolyte in the application of portable and wearable devices,gel polymer electrolytes(GPEs)are expected to obtain more preferable properties rather than just be satisfied with the merits of high safety and deformability.Here,an easy-operated method is employed to fabricate cross-linked composite polymer membranes used for GPEs assisted by UV irradiation,in which N-doped carbon quantum dots(N-CQDs)and TiO2are introduced as photocatalysts and additives to improve the performances of GPEs.Specifically,N-CQDs participate as a cross-linker to construct the inner porous structure,and TiO2nanoparticles serve as a stabilizer to improve the electrochemical stability of GPEs under high voltage(3.5 V).The excellent thermal and mechanical stability of the membrane fabricated in this work guarantee the safety of the supercapacitors(SCs).This GPE based SC not only exhibits prominent rate performance(105%capacitance retention at the current density of 40A g^(-1))and cyclic stability(85%at 1 A g^(-1)under 3.5 V after 20,000 cycles),but also displays remarkable energy density(42.88 Wh kg^(-1))with high power density(19.3 k W kg^(-1)).Moreover,the superior rate and cycling performances of the as-prepared GPE based flexible SCs under flat and bending state confirm the feasibility of its application in flexible energy storage devices. 展开更多
关键词 gel polymer electrolyte UV cross-linking Energy density High voltage window
在线阅读 下载PDF
An integrated approach to improve the performance of lean–electrolyte lithium–sulfur batteries 被引量:4
18
作者 Hualin Ye Jianguo Sun +1 位作者 Yun Zhao Jim Yang Lee 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期585-592,共8页
While the sulfur conversion reaction kinetics in Li–S batteries is nowadays improved by the use of appropriate electrocatalysts,it remains a challenge for the batteries to perform well under the lean electrolyte cond... While the sulfur conversion reaction kinetics in Li–S batteries is nowadays improved by the use of appropriate electrocatalysts,it remains a challenge for the batteries to perform well under the lean electrolyte condition where polysulfide shuttle,electrode passivation and the loss of electrolyte due to side reactions,are aggravated.These challenges are addressed in this study by the tandem use of a polysulfide conversion catalyst and a redox–targeting mediator in a gel sulfur cathode.Specifically,the gel cathode reduces the polysulfide mobility and hence the polysulfide shuttle and the passivation of the lithium anode by the crossover polysulfides.The redox mediator restrains the deposition of inactive sulfur species in the cathode thereby enabling the Fe–N and Co–N co–doped carbon catalyst to prolong its catalytic activity.Consequently,the integrated catalytic system is able to increase the discharge capacity of high–loading (6.8 mg cm^(-2)) lean–electrolyte (4.0μL mg^(-1)) Li–S batteries from~630 to~1316 m Ah g^(-1),concurrently with an improvement of the cycle life (600 cycles with 46%capacity retention at 1.0 m A cm^(-2)).Redox mediator assisted catalysis in a gel cathode is therefore an effective strategy to extend the application of the sulfur conversion catalyst in lean electrolyte Li–S batteries. 展开更多
关键词 Redox mediators gel electrolytes Polysulfide catalysis Lean electrolyte Lithium–sulfur batteries
在线阅读 下载PDF
A versatile nano-TiO_(2) decorated gel separator with derived multi-scale nanofibers towards dendrite-blocking and polysulfide-inhibiting lithium-metal batteries 被引量:3
19
作者 Huijuan Zhao jing Yan +2 位作者 Nanping Deng Weimin Kang Bowen Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第4期190-201,共12页
In this study,a versatile fluorine-bearing gel membrane with multi-scale nanofibers was rationally designed and synthesized via facile one-step blend electrospinning of nano-titanium dioxide(TiO_(2))particles and fluo... In this study,a versatile fluorine-bearing gel membrane with multi-scale nanofibers was rationally designed and synthesized via facile one-step blend electrospinning of nano-titanium dioxide(TiO_(2))particles and fluorinated poly-m-phenyleneisophthalamide(PMIA)polymer solution.The prepared multiscale TiO_(2)-assisted gel separator presented relatively high porosity,small aperture,giving rise to superior affinity to electrolyte and sufficient active sites to accelerate lithium ions migration.Meanwhile,the asfabricated multifunctional GPE also rendered outstanding heat-resistance and well-distributed lithiumions flux,and the mutual overlaps between the coarse fibers and the fine fibers within the multi-scale nanofiber membrane provided a strong skeleton support,which in turn laid a solid footing stone for high-security and dendrite-proof batteries.Particularly,the nano-TiO_(2) particles within PMIA membrane acted as"gatekeepers",which can not only resist the growth of lithium dendrites,but also intercept the dissolved polysulfide on cathode side.Based on these merits,the gel PMIA-based lithium cobalt(LCO)/lithium battery obtained the remarkably improved rate capability and cycle performances on account of superior ionic conductivity,steady anodic stability window and weakened polarization behavior.Meanwhile,the resultant lithium-sulfur cell also delivered the outstanding cycling stability with the aid of the greatly prevented"shuttle effect"of dissolved lithium polysulfides based on the physical trapping and chemical binding of the prepared GPE to polysulfides species.This work proved that the addition of functional inorganic nanoparticles similar with TiO_(2) in multi-scale gel PMIA membrane can enhance the lithium ions transport capability,resist the growth of lithium dendrites as well as inhibit the shuttle effect of polysulfides,which would prompt a great development for dendrite-blocking and polysulfideinhibiting lithium-metal cells. 展开更多
关键词 Versatile gel polymer electrolyte Multi-scale nanofibers Thermostability Dendrite-blocking and polysulfide-inhibiting Lithium-metal batteries
在线阅读 下载PDF
Insights into the nitride-regulated processes at the electrolyte/electrode interface in quasi-solid-state lithium metal batteries 被引量:2
20
作者 Jing Wan Wan-Ping Chen +5 位作者 Gui-Xian Liu Yang Shi Sen Xin Yu-Guo Guo Rui Wen Li-Jun Wan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第4期780-786,共7页
Gel polymer electrolytes(GPEs)are one of the promising candidates for high-energy-density quasi-solid-state lithium metal batteries(QSSLMBs),for their high ionic conductivity and excellent interfacial compatibility.Th... Gel polymer electrolytes(GPEs)are one of the promising candidates for high-energy-density quasi-solid-state lithium metal batteries(QSSLMBs),for their high ionic conductivity and excellent interfacial compatibility.The comprehension of dynamic evolution and structure-reactivity correlation at the GPE/Li interface becomes significant.Here,in situ electrochemical atomic force microscopy(EC-AFM)provides insights into the LiNO_(3)-regulated micromechanism of the Li plating/stripping processes upon cycles in GPE-based LMBs at nanoscale.The additive LiNO_(3)induces the formation of amorphous nitride SEI film and facilitates Li^(+) ion diffusion.It stabilizes a compatible interface and regulates the Li nucleation/growth at steady kinetics.The deposited Li is in the shape of chunks and tightly compact.The Li dissolution shows favorable reversibility,which guarantees the cycling performance of LMBs.In situ AFM monitoring provides a deep understanding into the dynamic evolution of Li deposition/dissolution and the interphasial properties of tunable SEI film,regulating the rational design of electrolyte and optimizing interfacial establishment for GPE-based QSSLMBs. 展开更多
关键词 In-situ electrochemical atomic force microscopy gel polymer electrolyte Solid electrolyte interphase Lithium deposition/dissolution Quasi-solid-state lithium metal batteries
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部