To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectr...To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectral method(GPM). Different from the traditional trajectory optimization problem which generally considers the RLV as a point mass, the coupling between translational dynamics and rotational dynamics is taken into account. An optimization problem is formulated to minimize a performance index subject to 6-DOF equations of motion, including translational and rotational dynamics. A two-step optimal strategy is then introduced to reduce the large calculations caused by multiple variables and convergence confinement in 6-DOF trajectory optimization. The simulation results demonstrate that the 6-DOF trajectory optimal strategy for RLV is feasible.展开更多
This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-gu...This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.展开更多
To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm w...To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm with the improved Gauss pseudospectral method (GPM), is proposed. The improved PSO algorithm is used to generate a good initial value in a short time, and the mission of the improved GPM is to find the final solution with a high precision. In the improved PSO algorithm, by controlling the entropy of the swarm in each dimension, the typical PSO algorithm's weakness of being easy to fall into a local optimum can be overcome. In the improved GPM, two kinds of breaks are introduced to divide the trajectory into multiple segments, and the distribution of the Legendre-Gauss (LG) nodes can be altered, so that all the constraints can be satisfied strictly. Thereby the advan- tages of both the intelligent optimization algorithm and the direct method are combined. Simulation results demonstrate that the proposed method is insensitive to initial values, and it has more rapid convergence and higher precision than traditional ones.展开更多
The problem of optimal aeroassisted symmetric transfer between elliptical orbits is concerned.The complete trajectory is assumed as consisting of two impulsive velocity changes at the beginning and the end of an inter...The problem of optimal aeroassisted symmetric transfer between elliptical orbits is concerned.The complete trajectory is assumed as consisting of two impulsive velocity changes at the beginning and the end of an interior atmospheric subarc,where the vehicle is controlled via the lift coefficient and thrust.The corresponding dynamic equations are built and bounded controls are considered.For the purpose of optimization computation,the equations are normalized.In order to minimize the total fuel consumption,the geocentric radius of initial elliptical transfer orbital perigee and controls during atmospheric flight should all be optimized.It is an optimal control problem which involves additional parameter optimization.To solve the problem,a two-level optimization method denoted by "genetic algorithm + Gauss pseudospectral method" is adopted:the genetic algorithm is used for parameter optimization and the Gauss pseudospectral method is used for optimal control problems.The flow chart of simulation is given.On this basis,the issue of more realistic modeling with two finite-thrust subarcs in the nonatmospheric part of the trajectory is simultaneously addressed.The orbital transfer problem is transformed to three continuous optimal control problems,and the constraints at different times are given,which are respectively solved by using the Gauss pseudospectral method.The obtained numerical results indicate that the optimal thrust control is of bangbang type.The minimum-fuel trajectory in the atmosphere consists of aeroglide,aerocruise and aeroglide.They are compared with the results of pure impulsive model,and the conclusions that a significant fuel saving will be achieved by synergetic maneuver are drawn.展开更多
基金supported by the National Basic Research Program of China(973 Program)(2012CB720003)the National Natural Science Foundation of China(10772011)
文摘To be close to the practical flight process and increase the precision of optimal trajectory, a six-degree-offreedom(6-DOF) trajectory is optimized for the reusable launch vehicle(RLV) using the Gauss pseudospectral method(GPM). Different from the traditional trajectory optimization problem which generally considers the RLV as a point mass, the coupling between translational dynamics and rotational dynamics is taken into account. An optimization problem is formulated to minimize a performance index subject to 6-DOF equations of motion, including translational and rotational dynamics. A two-step optimal strategy is then introduced to reduce the large calculations caused by multiple variables and convergence confinement in 6-DOF trajectory optimization. The simulation results demonstrate that the 6-DOF trajectory optimal strategy for RLV is feasible.
文摘This paper considers the problem of generating a flight trajectory for a single fixed-wing unmanned combat aerial vehicle (UCAV) performing an air-to-surface multi-target attack (A/SMTA) mission using satellite-guided bombs. First, this problem is formulated as a variant of the traveling salesman problem (TSP), called the dynamic-constrained TSP with neighborhoods (DCT- SPN). Then, a hierarchical hybrid approach, which partitions the planning algorithm into a roadmap planning layer and an optimal control layer, is proposed to solve the DCTSPN. In the roadmap planning layer, a novel algorithm based on an updatable proba- bilistic roadmap (PRM) is presented, which operates by randomly sampling a finite set of vehicle states from continuous state space in order to reduce the complicated trajectory planning problem to planning on a finite directed graph. In the optimal control layer, a collision-free state-to-state trajectory planner based on the Gauss pseudospectral method is developed, which can generate both dynamically feasible and optimal flight trajectories. The entire process of solving a DCTSPN consists of two phases. First, in the offline preprocessing phase, the algorithm constructs a PRM, and then converts the original problem into a standard asymmet- ric TSP (ATSP). Second, in the online querying phase, the costs of directed edges in PRM are updated first, and a fast heuristic searching algorithm is then used to solve the ATSP. Numerical experiments indicate that the algorithm proposed in this paper can generate both feasible and near-optimal solutions quickly for online purposes.
基金supported by the National Natural Science Foundation of China(61272011)
文摘To rapidly generate a reentry trajectory for hypersonic vehicle satisfying waypoint and no-fly zone constraints, a novel optimization method, which combines the improved particle swarm optimization (PSO) algorithm with the improved Gauss pseudospectral method (GPM), is proposed. The improved PSO algorithm is used to generate a good initial value in a short time, and the mission of the improved GPM is to find the final solution with a high precision. In the improved PSO algorithm, by controlling the entropy of the swarm in each dimension, the typical PSO algorithm's weakness of being easy to fall into a local optimum can be overcome. In the improved GPM, two kinds of breaks are introduced to divide the trajectory into multiple segments, and the distribution of the Legendre-Gauss (LG) nodes can be altered, so that all the constraints can be satisfied strictly. Thereby the advan- tages of both the intelligent optimization algorithm and the direct method are combined. Simulation results demonstrate that the proposed method is insensitive to initial values, and it has more rapid convergence and higher precision than traditional ones.
基金supported by the National High Technology Research and Development Program of China(863Program)(2011AA0469)
文摘The problem of optimal aeroassisted symmetric transfer between elliptical orbits is concerned.The complete trajectory is assumed as consisting of two impulsive velocity changes at the beginning and the end of an interior atmospheric subarc,where the vehicle is controlled via the lift coefficient and thrust.The corresponding dynamic equations are built and bounded controls are considered.For the purpose of optimization computation,the equations are normalized.In order to minimize the total fuel consumption,the geocentric radius of initial elliptical transfer orbital perigee and controls during atmospheric flight should all be optimized.It is an optimal control problem which involves additional parameter optimization.To solve the problem,a two-level optimization method denoted by "genetic algorithm + Gauss pseudospectral method" is adopted:the genetic algorithm is used for parameter optimization and the Gauss pseudospectral method is used for optimal control problems.The flow chart of simulation is given.On this basis,the issue of more realistic modeling with two finite-thrust subarcs in the nonatmospheric part of the trajectory is simultaneously addressed.The orbital transfer problem is transformed to three continuous optimal control problems,and the constraints at different times are given,which are respectively solved by using the Gauss pseudospectral method.The obtained numerical results indicate that the optimal thrust control is of bangbang type.The minimum-fuel trajectory in the atmosphere consists of aeroglide,aerocruise and aeroglide.They are compared with the results of pure impulsive model,and the conclusions that a significant fuel saving will be achieved by synergetic maneuver are drawn.