期刊文献+
共找到323篇文章
< 1 2 17 >
每页显示 20 50 100
Aerial target threat assessment based on gated recurrent unit and self-attention mechanism 被引量:4
1
作者 CHEN Chen QUAN Wei SHAO Zhuang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期361-373,共13页
Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties ... Aerial threat assessment is a crucial link in modern air combat, whose result counts a great deal for commanders to make decisions. With the consideration that the existing threat assessment methods have difficulties in dealing with high dimensional time series target data, a threat assessment method based on self-attention mechanism and gated recurrent unit(SAGRU) is proposed. Firstly, a threat feature system including air combat situations and capability features is established. Moreover, a data augmentation process based on fractional Fourier transform(FRFT) is applied to extract more valuable information from time series situation features. Furthermore, aiming to capture key characteristics of battlefield evolution, a bidirectional GRU and SA mechanisms are designed for enhanced features.Subsequently, after the concatenation of the processed air combat situation and capability features, the target threat level will be predicted by fully connected neural layers and the softmax classifier. Finally, in order to validate this model, an air combat dataset generated by a combat simulation system is introduced for model training and testing. The comparison experiments show the proposed model has structural rationality and can perform threat assessment faster and more accurately than the other existing models based on deep learning. 展开更多
关键词 target threat assessment gated recurrent unit(gru) self-attention(SA) fractional Fourier transform(FRFT)
在线阅读 下载PDF
具有注意力机制的CNN-GRU模型在风电机组异常状态预警中的应用 被引量:1
2
作者 马良玉 胡景琛 +1 位作者 段晓冲 黄日灏 《南京信息工程大学学报》 北大核心 2025年第3期374-383,共10页
针对风电机组长期在恶劣环境中工作导致故障频发的问题,提出一种具有注意力机制的卷积神经网络(CNN)及门控循环单元(GRU)的异常工况预警方法.利用快速密度峰值聚类和局部离群因子算法对风电机组数据采集与监控系统中的异常数据进行清洗... 针对风电机组长期在恶劣环境中工作导致故障频发的问题,提出一种具有注意力机制的卷积神经网络(CNN)及门控循环单元(GRU)的异常工况预警方法.利用快速密度峰值聚类和局部离群因子算法对风电机组数据采集与监控系统中的异常数据进行清洗,结合机理分析及极端梯度提升(XGBoost)算法对特征重要性的评估确定模型的输入输出参数,进而采用具有注意力机制的CNN-GRU模型建立风电机组正常运行工况的性能预测模型.以该预测模型为基础,利用时移滑动窗口构建风电机组状态评价指标,并结合统计学中的区间估计法确定预警阈值,最终实现机组异常工况预警.应用某风电机组真实历史故障数据进行实验,结果表明,本文所提方法能够准确地对异常状态进行提前识别和预警,有利于运维人员及时处理故障,保证机组安全稳定运行. 展开更多
关键词 风电机组 卷积神经网络 门控循环单元 注意力机制 故障预警
在线阅读 下载PDF
基于GAT-GRU的高渗透率分布式新能源接入的配电网无功优化 被引量:1
3
作者 刘会家 滕杰 +1 位作者 冯铃 肖懂 《现代电力》 北大核心 2025年第3期531-541,共11页
无功优化在配电网的电压控制、潮流分布以及整个配电网的稳定中起着至关重要的作用。目前,高渗透率新能源的分布式并网以及负荷的多样化给电网的稳定运行带来了巨大的挑战,传统无功补偿方式的时效性以及准确性在当下复杂电网背景下已经... 无功优化在配电网的电压控制、潮流分布以及整个配电网的稳定中起着至关重要的作用。目前,高渗透率新能源的分布式并网以及负荷的多样化给电网的稳定运行带来了巨大的挑战,传统无功补偿方式的时效性以及准确性在当下复杂电网背景下已经无法满足低成本–高质量的供电要求。针对以上情况,该文采用图注意力网络(graph attention networks,GAT)结合门控循环单元(gate recurrent unit,GRU)神经网络对配电网的无功做出优化决策,基于GAT-GRU网络,把握节点间相关性特征的同时获取配电网特征时间依赖性。依据决策,通过无功调节设备与智能柔性开关(soft open point,SOP)协同,以解决配电网的无功优化问题。最后,利用改进的IEEE 33节点配电模型对所提方法进行验证,结果表明GAT-GRU网络在电压控制、网络损耗优化等方面具有良好的效果,证明了该方法在无功优化中的有效性与优异性。 展开更多
关键词 无功优化 配电网 图注意力网络 门控循环单元 分布式能源 智能软开关
在线阅读 下载PDF
基于WOA-CNN-BiGRU的PEMFC性能衰退预测
4
作者 陈贵升 刘强 许杨松 《电源技术》 北大核心 2025年第4期831-840,共10页
针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影... 针对PEMFC性能预测领域中存在的预测精度不足和泛化能力有限的问题,提出了一种结合鲸鱼优化算法(WOA)、卷积神经网络(CNN)和双向门控循环单元(BiGRU)的PEMFC输出性能预测方法。首先,采用最大信息系数从大量数据中提取对PEMFC输出性能影响显著的特征,以降低计算复杂度。然后,结合CNN的特征提取能力和BiGRU在处理双向时间依赖性数据上的优势建立CNNBiGRU模型,并通过WOA优化其超参数进一步提升预测的准确性。最后,与传统预测模型进行对比,验证所建模型的优越性。实验结果表明:在训练集占比为60%时,模型在三种不同工况PEMFC老化数据集上的RMSE分别为0.0017、0.0014和0.0110,证明CNN-BiGRU模型具有较高的预测精度以及良好的泛化能力。 展开更多
关键词 PEMFC 性能衰退 鲸鱼优化算法 卷积神经网络 双向门控循环单元
在线阅读 下载PDF
基于HBA-GRU的水电站大坝变形监控模型研究
5
作者 黄勇 刘昱玚 +3 位作者 宋璇 宋锦焘 朱海晨 张盛飞 《电网与清洁能源》 北大核心 2025年第9期95-100,共6页
大坝是水电站核心的挡水建筑物,大坝变形规律的精准监控是保障水电站安全的重要手段。针对大坝变形非线性强的特点以及监控模型参数影响的问题,融合先进深度学习和仿生优化算法,利用蜜獾优化算法(honey badger optimization algorithm,H... 大坝是水电站核心的挡水建筑物,大坝变形规律的精准监控是保障水电站安全的重要手段。针对大坝变形非线性强的特点以及监控模型参数影响的问题,融合先进深度学习和仿生优化算法,利用蜜獾优化算法(honey badger optimization algorithm,HBA)对深度学习门控制循环单元(gated recurrent unit,GRU)模型的超参数进行优化,建立HBA-GRU组合模型应用于水电站大坝变形监控预测。通过某水电站面板堆石坝变形监测数据实证结果显示,提出的组合模型在保持较高预测准确性的同时展现出良好的泛化性能,可为同类型水电站工程安全监控模型的构建提供有效技术支撑。 展开更多
关键词 水电站大坝 安全监控 变形预测 深度学习 门控制循环单元 蜜獾优化算法
在线阅读 下载PDF
利用GRU双分支信息协同增强的长尾推荐模型
6
作者 钱忠胜 肖双龙 +2 位作者 朱辉 王晓闻 刘金平 《计算机科学与探索》 北大核心 2025年第2期476-489,共14页
长尾现象在序列推荐系统中长期存在,包括长尾用户和长尾项目两个方面。虽然现有许多研究缓解了序列推荐系统中的长尾问题,但大部分只是单方面地关注长尾用户或长尾项目。然而,长尾用户和长尾项目问题常常同时存在,只考虑其中一方会导致... 长尾现象在序列推荐系统中长期存在,包括长尾用户和长尾项目两个方面。虽然现有许多研究缓解了序列推荐系统中的长尾问题,但大部分只是单方面地关注长尾用户或长尾项目。然而,长尾用户和长尾项目问题常常同时存在,只考虑其中一方会导致另一方性能不佳,且未关注到长尾用户、长尾项目各自的信息匮乏问题。提出一种利用GRU双分支信息协同增强的长尾推荐模型(long-tail recommendation model utilizing gated recurrent unit dualbranch information collaboration enhancement,LT-GRU),从用户与项目两个方面共同缓解长尾问题,并通过协同增强的方式丰富长尾信息。该模型由长尾用户和长尾项目双分支组成,每个分支分别负责各自的信息处理,并相互训练以充实另一方的信息。同时,引入一种偏好机制,通过演算用户与项目的影响因子,以动态调整用户偏好与项目热度,进一步缓解长尾推荐中信息不足问题。在Amazon系列的6个真实数据集上与6种经典模型进行实验对比,相较于长尾推荐模型中最优的结果,所提模型LT-GRU在HR与NDCG两个指标上分别平均提高2.49%、3.80%。这表明,在不牺牲头部用户和热门项目推荐性能的情况下,有效地缓解了长尾用户和长尾项目问题。 展开更多
关键词 推荐系统 长尾推荐 信息协同增强 门控循环单元(gru)
在线阅读 下载PDF
基于WOA-GRU的风电机组发电机故障预警方法
7
作者 邢作霞 马岩溪 +2 位作者 郭珊珊 陈明阳 罗世茂 《电机与控制学报》 北大核心 2025年第6期54-62,共9页
为实现风电机组发电机故障的早期捕获,提高故障预警的精度,提出一种基于WOA-GRU模型的风电机组发电机故障预警方法。首先,通过箱线图剔除风电机组发电机温度离群数据并应用灰色关联分析方法在高维SCADA数据中提取出与风电机组发电机温... 为实现风电机组发电机故障的早期捕获,提高故障预警的精度,提出一种基于WOA-GRU模型的风电机组发电机故障预警方法。首先,通过箱线图剔除风电机组发电机温度离群数据并应用灰色关联分析方法在高维SCADA数据中提取出与风电机组发电机温度关联度高的特征参量作为模型输入;其次,采用鲸鱼优化算法对门控循环单元神经网络超参数组寻优,将获得的最优参数门控循环单元神经网络模型用于预测风电机组发电机温度,并通过自适应阈值算法设定报警阈值,据此对风电机组发电机进行故障预警;最后,以国内某风电场风电机组SCADA数据为例进行分析,将WOA-GRU与BP、ELM、RF、GRU、LSTM模型进行对比,结果表明,WOA-GRU模型比其他模型有更高的预测精度,并能够更精确地捕获风电机组发电机早期故障。 展开更多
关键词 风电机组发电机 SCADA数据 鲸鱼优化算法 门控循环单元 故障预警
在线阅读 下载PDF
基于增强型鲸鱼优化算法CNN-BiGRU-AT模型的燃料电池衰退预测
8
作者 全睿 程功 +2 位作者 周宇龙 章国光 全琎 《电工技术学报》 北大核心 2025年第19期6342-6358,共17页
为了进一步提高传统深度学习方法预测燃料电池剩余使用寿命(RUL)的精度,该文提出了一种综合卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(AT)的混合模型。利用奇异谱分析对燃料电池衰减数据进行预处理、消除噪声并获取有效... 为了进一步提高传统深度学习方法预测燃料电池剩余使用寿命(RUL)的精度,该文提出了一种综合卷积神经网络(CNN)、双向门控循环单元(BiGRU)和注意力机制(AT)的混合模型。利用奇异谱分析对燃料电池衰减数据进行预处理、消除噪声并获取有效信息,CNN-BiGRU提取其时空特征、历史和未来信息,AT进一步探索时空相关性,并采用增强型鲸鱼优化算法(EWOA)对模型超参数进行优化。结果表明,与长短期记忆(LSTM)网络、CNN、GRU、CNN-GRU、CNN-BiGRU、BiGRU-AT、CNN-BiGRU-AT和其他算法优化的CNN-BiGRU-AT相比,在40%训练数据下,EWOA优化的CNN-BiGRU-AT模型其方均根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和相对误差(RE)均最小,最小值分别为0.2021%、0.1278%、0.033%和0.027%。此外,该模型在缺失数据达60%的情况下仍能保持较强的鲁棒性,其最小RMSE、MAE、MAPE和RE分别为0.3879%、0.2559%、0.0811%和0.32%,具有较好的燃料电池剩余使用寿命预测性能。 展开更多
关键词 燃料电池 剩余使用寿命 双向门控循环单元 注意力机制 增强型鲸鱼优化算法
在线阅读 下载PDF
基于SSA优化的Transformer-BiGRU短期风电功率预测
9
作者 包广斌 杨龙龙 +1 位作者 范超林 李焕 《电子测量技术》 北大核心 2025年第13期139-147,共9页
为提高风电功率预测精度,提出了一种基于SSA优化的Transformer-BiGRU组合模型。首先,采用CEEMDAN将原始序列分解为多个模态分量和残差分量,降低数据复杂性和不稳定性。然后,结合Transformer的自注意力机制与BiGRU的双向时序建模能力,构... 为提高风电功率预测精度,提出了一种基于SSA优化的Transformer-BiGRU组合模型。首先,采用CEEMDAN将原始序列分解为多个模态分量和残差分量,降低数据复杂性和不稳定性。然后,结合Transformer的自注意力机制与BiGRU的双向时序建模能力,构建了一个高效的组合模型。针对Transformer-BiGRU模型超参数优化困难的问题,引入SSA麻雀搜索算法对超参数进行优化,进一步提升预测精度。最后,以龙源电力风电预测数据集为例,通过对比实验和消融实验验证了该模型优于其他传统模型和模型中各组件的有效性,实验结果表明该方法的R 2达到了0.9810。 展开更多
关键词 风电预测 麻雀搜索算法 自适应噪声完备经验模态分解 双向门控循坏单元 自注意力机制
在线阅读 下载PDF
基于COOT算法的VMD-HPCA-GRU超短期风电功率预测 被引量:2
10
作者 何星月 杨靖 +2 位作者 朱兆强 杨斌 覃涛 《北京航空航天大学学报》 北大核心 2025年第5期1716-1725,共10页
为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模... 为了提高超短期风电功率的预测精度,提出了一种基于COOT算法优化的变分模态分解(VMD)、分层主成分分析(hierarchical principal components analysis,HPCA)与门控循环单元神经网络(GRU)的组合预测模型。首先,利用能量差值法确定变分模态分解子模态数,从而将具有强非线性的原始功率序列分解为一组相对平稳的子模态。其次,利用灰色关联度分析计算高维气象特征与功率序列的关联度值并进行排序分层,利用主成分分析提取各分层特征变量的第一主成分,实现对高维气象特征的降维。最后,引入COOT算法对门控循环单元预测模型的超参数进行优化,加速模型收敛速度,提高模型预测精度。对贵州某风电场的实测数据进行仿真分析,结果表明:相较于传统GRU模型的预测结果,所提方法的均方根误差、平均绝对误差、平均绝对百分误差分别下降了67.41%、72.25%、45.69%,且预测精度高于其他4种组合预测模型,有效提高了超短期风电功率预测精度。 展开更多
关键词 风电功率预测 变分模态分解 分层主成分分析 COOT算法 门控循环单元
在线阅读 下载PDF
基于分解技术的IZOA-Transformer-BiGRU短期风电功率预测 被引量:2
11
作者 蒲晓云 杨靖 +1 位作者 杨兴 宁媛 《电子测量技术》 北大核心 2025年第2期39-48,共10页
准确的风电功率预测对于保障电网平稳运行和提升风资源利用效率具有重要意义。针对风电功率数据的非平稳性和间歇性等特征,本文提出了一种结合数据分解技术的IZOA-Transformer-BiGRU组合预测模型,以提升短期风电功率预测的精度和可靠性... 准确的风电功率预测对于保障电网平稳运行和提升风资源利用效率具有重要意义。针对风电功率数据的非平稳性和间歇性等特征,本文提出了一种结合数据分解技术的IZOA-Transformer-BiGRU组合预测模型,以提升短期风电功率预测的精度和可靠性。首先,采用能量差值法确定变分模态分解(VMD)的子模态数,将具有较强随机波动性的原始风电功率分解为一系列相对平稳的子序列,从而更加充分地提取时序特征。其次,构建Transformer-BiGRU模型,引入多头注意力机制并行处理多个特征之间的交互关系,并利用BiGRU捕捉时序序列间的前后依赖性,从而提升预测性能。为了进一步优化模型性能,采用融合Singer混沌映射、透镜折射反向学习和单纯形法策略的改进斑马优化算法(IZOA),对Transformer-BiGRU模型的隐藏层神经元数、初始学习率、正则化系数和多头注意力头数四个关键超参数进行优化。最后,通过IZOA-Transformer-BiGRU对分解后的各子序列进行预测,经过叠加重构得到最终的预测结果。实验结果表明,与单一BiGRU模型相比,所提模型的决定系数提升了5.10%,平均绝对误差、均方根误差以及平均绝对百分比误差分别降低了56.17%、54.58%、54.55%,具有较高的预测精度。 展开更多
关键词 风电功率预测 变分模态分解 TRANSFORMER 双向门控循环单元 能量差值法 斑马优化算法
在线阅读 下载PDF
一种基于注意力机制的BERT-CNN-GRU检测方法 被引量:3
12
作者 郑雅洲 刘万平 黄东 《计算机工程》 北大核心 2025年第1期258-268,共11页
针对现有检测方法对短域名检测性能普遍较差的问题,提出一种BERT-CNN-GRU结合注意力机制的检测方法。通过BERT提取域名的有效特征和字符间组成逻辑,根据并行的融合简化注意力的卷积神经网络(CNN)和基于多头注意力机制的门控循环单元(GRU... 针对现有检测方法对短域名检测性能普遍较差的问题,提出一种BERT-CNN-GRU结合注意力机制的检测方法。通过BERT提取域名的有效特征和字符间组成逻辑,根据并行的融合简化注意力的卷积神经网络(CNN)和基于多头注意力机制的门控循环单元(GRU)提取域名深度特征。CNN使用n-gram排布的方式提取不同层次的域名信息,并采用批标准化(BN)对卷积结果进行优化。GRU能够更好地获取前后域名的组成差异,多头注意力机制在捕获域名内部的组成关系方面表现出色。将并行检测网络输出的结果进行拼接,最大限度地发挥两种网络的优势,并采用局部损失函数聚焦域名分类问题,提高分类性能。实验结果表明,该方法在二分类上达到了最优效果,在短域名多分类数据集上15分类的加权F1值达到了86.21%,比BiLSTM-Seq-Attention模型提高了0.88百分点,在UMUDGA数据集上50分类的加权F1值达到了85.51%,比BiLSTM-Seq-Attention模型提高了0.45百分点。此外,该模型对变体域名和单词域名生成算法(DGA)检测性能较好,具有处理域名数据分布不平衡的能力和更广泛的检测能力。 展开更多
关键词 恶意短域名 BERT预训练 批标准化 注意力机制 门控循环单元 并行卷积神经网络
在线阅读 下载PDF
基于WOA-GRU模型的煤泥浮选智能控制研究 被引量:1
13
作者 窦治衡 王然风 +3 位作者 秦新凯 柴宇青 李品钰 刘舒通 《工矿自动化》 北大核心 2025年第4期153-159,168,共8页
由于浮选过程机理复杂,难以满足先进过程控制的需求,基于系统辨识方法进行建模,并针对传统辨识方法拟合度较低的问题,提出了一种基于鲸鱼优化算法(WOA)与门控循环单元(GRU)(WOA-GRU)的系统辨识模型。该模型利用GRU有效应对浮选过程中存... 由于浮选过程机理复杂,难以满足先进过程控制的需求,基于系统辨识方法进行建模,并针对传统辨识方法拟合度较低的问题,提出了一种基于鲸鱼优化算法(WOA)与门控循环单元(GRU)(WOA-GRU)的系统辨识模型。该模型利用GRU有效应对浮选过程中存在的时滞特性,通过WOA对GRU网络参数进行优化,进一步提高了模型的辨识精度。考虑到现有选煤厂普遍使用单输入单输出的PID控制器,难以应对多输入多输出系统,将模型预测控制(MPC)引入实际生产现场,以更好地解决浮选过程中多变量耦合问题。基于代池坝选煤厂的生产数据,分别对WOA-GRU和NARX 2种辨识模型进行了MPC仿真,结果表明,WOA-GRU模型的拟合精度较NARX模型高51.84%,引入MPC后,WOA-GRU模型可将灰分波动控制在设定值的±4%内,优于NARX模型。现场试运行结果表明,灰分波动幅度位于5%~10%的数据较引入MPC前占比减少了10.8%,大于10%的数据占比则减少了3.9%,说明WAO-GRU模型不仅具备更高的精度与稳定性,而且能够减小灰分的波动,为煤泥浮选过程的智能化控制与应用提供了参考。 展开更多
关键词 煤泥浮选 系统辨识 模型预测控制 鲸鱼优化算法 门控循环单元 煤泥灰分
在线阅读 下载PDF
基于特征增强的Transformer-GRU库岸滑坡位移预测模型
14
作者 汪松林 唐辉明 邹宗兴 《安全与环境工程》 北大核心 2025年第5期183-195,共13页
三峡库区水系纵横,峡谷幽深,广泛分布软弱易滑的三叠系和侏罗系红层,为我国地质灾害防治的重点区域。滑坡位移作为滑坡变形最直观的表征,其高精度预测对地质灾害风险防范具有重要意义。以三峡库区典型库岸滑坡——黄土坡临江Ⅰ号滑坡为... 三峡库区水系纵横,峡谷幽深,广泛分布软弱易滑的三叠系和侏罗系红层,为我国地质灾害防治的重点区域。滑坡位移作为滑坡变形最直观的表征,其高精度预测对地质灾害风险防范具有重要意义。以三峡库区典型库岸滑坡——黄土坡临江Ⅰ号滑坡为应用实例,在特征提取、集成学习和参数优化方面改进模型,深入挖掘每日降雨、库水位和地表位移监测数据中的关键特征,同时结合自注意力机制动态赋权及并行运算的优势,用Transformer编码层堆叠门控循环单元(gated recurrent unit,GRU),并用粒子群优化(particle swarm optimization,PSO)算法寻找最优超参数组合,提出了一种基于特征增强的Transformer-GRU库岸滑坡位移预测模型。结果表明,相较于粒子群优化门控循环单元模型(particle swarm optimization-gated recurrent unit,PSO-GRU)、粒子群优化反向传播神经网络模型(particle swarm optimization-backpropagation neural network,PSO-BPNN)、粒子群优化支持向量回归模型(particle swarm optimization-support vector regression,PSO-SVR)这类传统位移预测模型,新模型的均方根误差(root mean square error,RMSE)降低了72.02%~75.53%,平均绝对误差(mean absolute error,MAE)降低了74.35%~78.86%,说明新模型在关键特征变量学习能力和位移预测精度上更具优势。该研究为滑坡位移预测研究提供了新思路。 展开更多
关键词 库岸滑坡 位移预测 特征增强 自注意力机制 门控循环单元(gru) 粒子群优化(PSO)
在线阅读 下载PDF
基于LSTM-GRU-Attention模型的管道直饮水月供水量预测
15
作者 刘颖 刘治学 +5 位作者 郭广丰 刘保卫 杜帅帅 王鹏渊 张新田 赵继然 《水资源与水工程学报》 北大核心 2025年第3期116-124,共9页
管道直饮水月供水量的预测受到多种因素的影响,如气温变化、节假日效应以及用户数量变动等,这些因素共同作用导致供水量序列呈现出复杂性、非线性和非平稳性的特点。为了提高预测模型的准确度并优化其网络结构,提出了一种结合长短期记忆... 管道直饮水月供水量的预测受到多种因素的影响,如气温变化、节假日效应以及用户数量变动等,这些因素共同作用导致供水量序列呈现出复杂性、非线性和非平稳性的特点。为了提高预测模型的准确度并优化其网络结构,提出了一种结合长短期记忆(LSTM)、门控循环单元(GRU)与注意力机制(Attention)的LSTM-GRU-Attention预测模型。该模型通过贝叶斯优化算法确定最优超参数,并将外部因素如气温等与历史月供水量数据一起作为输入时间序列,借助Attention机制,模型能够对输入序列中的不同时间步进行加权处理,从而更准确地捕捉供水量的波峰和波谷值。结果表明:与单独使用LSTM、GRU及LSTM-GRU模型相比,LSTM-GRU-Attention模型在预测精度上有显著提升,平均绝对百分比误差(MAPE)达到了6.89%,较其他3种模型分别降低了7.74%、6.29%和5.23%,同时收敛速度更快。LSTM-GRU-Attention模型在高效预测管道直饮水月供水量方面展现了显著的效果,有助于直饮水企业合理安排生产计划、降低运营成本及提升管理水平,显示出较高的应用价值。 展开更多
关键词 管道直饮水 月供水量预测 长短期记忆网络 门控循环单元 LSTM-gru-Attention模型
在线阅读 下载PDF
基于多维复向特征融合与CNN-GRU的转子不平衡量识别方法
16
作者 王坚坚 廖与禾 +1 位作者 杨磊 薛久涛 《中国机械工程》 北大核心 2025年第9期1905-1915,共11页
现有的无试重不平衡量识别算法采用优化算法框架,通过大量迭代运算以逐步逼近最优解,这类策略普遍收敛速度迟缓且易陷入局部极值。为此,利用神经网络直接学习并解析不平衡振动响应与不平衡量之间的复杂映射关系,进而实现不平衡量的高精... 现有的无试重不平衡量识别算法采用优化算法框架,通过大量迭代运算以逐步逼近最优解,这类策略普遍收敛速度迟缓且易陷入局部极值。为此,利用神经网络直接学习并解析不平衡振动响应与不平衡量之间的复杂映射关系,进而实现不平衡量的高精度识别。通过转子动力学模型进行仿真,构建了带标签的足量不平衡振动数据集。针对不平衡数据的多维复向特性,设计了一种特征融合机制。核心算法层面,结合卷积神经网络(CNN)与门控循环单元(GRU)构建了CNN-GRU混合模型,其中,CNN部分负责从振动数据中提取局部空间特征,GRU负责捕捉振动数据中的时序依赖关系,通过整合空间与时间域的信息,显著增强了模型的泛化能力和识别精度。测试集数据和实验台实验的不平衡量识别结果表明,所提方法可以准确预估识别转子的不平衡量,为无试重现场动平衡提供迅速准确的指导。 展开更多
关键词 转子 无试重 不平衡量识别 卷积神经网络-门控循环单元 多维复向特征融合
在线阅读 下载PDF
基于改进CNN-GRU模型的滚动轴承多故障诊断模型
17
作者 张雄 渠伟瀅 +2 位作者 王文强 董乐聪 万书亭 《机电工程》 北大核心 2025年第10期1931-1939,共9页
针对多种工况和故障共存引起的滚动轴承故障,采用传统的基于卷积神经网络的故障诊断模型进行诊断时,存在提取特征不丰富、容易丢失故障敏感信息、计算复杂和准确性低的问题,为此,提出了一种二维卷积神经网络(2D-CNN)与门控循环单元(GRU... 针对多种工况和故障共存引起的滚动轴承故障,采用传统的基于卷积神经网络的故障诊断模型进行诊断时,存在提取特征不丰富、容易丢失故障敏感信息、计算复杂和准确性低的问题,为此,提出了一种二维卷积神经网络(2D-CNN)与门控循环单元(GRU)相结合的滚动轴承多故障诊断模型(2D-CNN-GRU),并采用XJTU-SY和QPZZ-II两个公开轴承数据集,对其有效性进行了验证。首先,采用2D-CNN作为空间特征提取器,获取了信号的多种局部和全局特征,并将GRU层作为信号时序信息特征提取器;然后,对模型的特征提取过程进行了可视化处理;最后,将所选择的有效信号输入2D-CNN-GRU模型中,完成了数据分类,进而完成了轴承故障诊断。研究结果表明:利用XJTU-SY实验数据和QPZZ-II实验数据,验证了该方法在多种工作条件下对多种轴承故障共存的情况具有优秀的分类效果,准确率达到了95%以上。与传统轴承故障诊断方法相比,2D-CNN-GRU模型具有更高的准确性和一定的实际应用价值。 展开更多
关键词 滚动轴承 多故障诊断 二维卷积神经网络 门控循环单元 特征提取 数据预处理
在线阅读 下载PDF
基于IKOA优化SAGRU的大坝变形预测模型
18
作者 胡伟泊 赵二峰 +1 位作者 胡灵芝 黎祎 《人民长江》 北大核心 2025年第6期222-228,共7页
为充分发掘大坝变形监测数据中的有效信息并提升监控模型的预测精度,提出了基于IKOA优化SAGRU的大坝变形预测模型。首先,在门控循环单元(GRU)中引入自注意力机制,通过计算时间维度特征的贡献率,有效捕捉实测数据中的关键时序特征,提升... 为充分发掘大坝变形监测数据中的有效信息并提升监控模型的预测精度,提出了基于IKOA优化SAGRU的大坝变形预测模型。首先,在门控循环单元(GRU)中引入自注意力机制,通过计算时间维度特征的贡献率,有效捕捉实测数据中的关键时序特征,提升模型对关键信息的敏感性;然后通过混沌映射初始化、Runge-Kutta位置更新和ESQ强化3种策略对开普勒优化算法(KOA)进行改进,以对耦合自注意力机制的门控循环单元(SAGRU)中的超参数进行自动寻优。应用实例表明:改进开普勒优化算法(IKOA)在寻优速度和精度方面均优于麻雀搜索算法、灰狼优化算法、北方苍鹰优化算法和传统KOA,模型的RMSE相比GRU、LSTM和XGBoost模型分别降低了48.45%,54.56%和58.14%,尤其在实测位移变化的关键拐点和峰值处,优化后的模型展现了更好的拟合效果,表明该模型能够全面挖掘大坝变形序列中的时序特征,解决了GRU记忆容量有限,以及传统优化算法收敛速度慢且易陷入局部最优解的问题,显著提高了大坝变形预测模型的准确性。 展开更多
关键词 大坝变形监测 门控循环单元(gru) 改进开普勒优化算法(IKOA) 自注意力机制 深度学习 小湾双曲拱坝
在线阅读 下载PDF
改进鲸鱼优化GRU的窄路短时车流量预测 被引量:1
19
作者 贾硕 林士飏 +1 位作者 杨苗会 孙滕 《计算机工程》 北大核心 2025年第2期111-125,共15页
窄路段作为交通场景中不可避免的瓶颈路段,其短时车流量预测对优化路径规划、改善交通状况具有重要意义。针对窄路段的时效性,同时考虑适用模型的准确度,提出一种基于佳点集初始化种群、非线性参数控制及柯西变异扰动的改进鲸鱼优化算法... 窄路段作为交通场景中不可避免的瓶颈路段,其短时车流量预测对优化路径规划、改善交通状况具有重要意义。针对窄路段的时效性,同时考虑适用模型的准确度,提出一种基于佳点集初始化种群、非线性参数控制及柯西变异扰动的改进鲸鱼优化算法(IWOA)-门控循环单元(GRU)的窄路短时车流量预测模型,以SUMO(Simulation of Urban Mobility)仿真数据进行了实证研究。对比实验结果显示,IWOA具有较好的全局性、收敛速度且更加稳定。基于IWOA-GRU的窄路短时车流量预测模型,均方根误差(RMSE)指标相较于WOA-GRU、PSO-GRU、长短期记忆神经(LSTM)网络分别降低10.96%、28.71%、42.23%,平均绝对百分比误差(MAPE)指标分别降低13.92%、46.18%、52.83%,有较为显著的准确性和稳定性。 展开更多
关键词 短时车流量预测 窄路段 鲸鱼优化算法 门控循环单元 SUMO软件
在线阅读 下载PDF
基于VMD-IOOA-BiGRU模型及误差补偿的短期电力负荷预测
20
作者 夏梦 于惠钧 《科学技术与工程》 北大核心 2025年第27期11642-11650,共9页
针对波动性大、复杂性高的电力负荷数据预测精度低的问题,提出一种结合变分模态分解(variational mode decomposition,VMD)、改进鱼鹰优化算法(improved osprey optimization algorithm,IOOA)与双向门控循环单元(bidirectional gated re... 针对波动性大、复杂性高的电力负荷数据预测精度低的问题,提出一种结合变分模态分解(variational mode decomposition,VMD)、改进鱼鹰优化算法(improved osprey optimization algorithm,IOOA)与双向门控循环单元(bidirectional gated recurrent unit,BiGRU)以及误差补偿(error compensation,EC)的混合电力负荷预测模型,称为VMD-IOOA-BiGRU-EC。首先,利用VMD对负荷序列进行初次分解,提取出多个模态和残差。然后,采用circle混沌映射、动态精英引导机制和“最优-随机均值”变异3种策略改进OOA优化BiGRU模型的相关超参数,以提升对初次分解的模态的预测效果;同时,针对初次分解产生的残差构建VMD-BiGRU模型,对其进行二次分解,再使用BiGRU对分解后的残差进行预测,即误差补偿。最后,将初次分解和二次分解后的各模态的预测结果进行叠加,得到最终的负荷预测值。在湖南省株洲市的真实电力负荷数据集上进行实验验证,结果显示所提方法的平均绝对误差、均方根误差和平均绝对百分比误差均低于其余对比模型,证明了其在处理复杂负荷数据时的有效性。 展开更多
关键词 变分模态分解 改进鱼鹰优化算法 双向门控循环单元 误差补偿 电力负荷预测
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部