Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at th...Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.展开更多
Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepare...Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.展开更多
Although phase separation is a ubiquitous phenomenon, the interactions between multiple components make it difficult to accurately model and predict. In recent years, machine learning has been widely used in physics s...Although phase separation is a ubiquitous phenomenon, the interactions between multiple components make it difficult to accurately model and predict. In recent years, machine learning has been widely used in physics simulations. Here,we present a physical information-enhanced graph neural network(PIENet) to simulate and predict the evolution of phase separation. The accuracy of our model in predicting particle positions is improved by 40.3% and 51.77% compared with CNN and SVM respectively. Moreover, we design an order parameter based on local density to measure the evolution of phase separation and analyze the systematic changes with different repulsion coefficients and different Schmidt numbers.The results demonstrate that our model can achieve long-term accurate predictions of order parameters without requiring complex handcrafted features. These results prove that graph neural networks can become new tools and methods for predicting the structure and properties of complex physical systems.展开更多
Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single prod...Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single product.Herein,we report a simple fabrication method for a Cu-Pd alloy catalyst for use in a membrane electrode assembly(MEA)-based CO_(2) electrolyzer for the electrochemical CO_(2) reduction reaction(ECRR)with high selectivity for CO production.When the composition of the Cu-Pd alloy catalyst was fabricated at 6:4,the selectivity for CO increased and the production of multi-carbon compounds and hydrogen is suppressed.Introducing a Cu-Pd alloy catalyst with 6:4 ratio as the cathode of the MEAbased CO_(2) electrolyzer showed a CO faradaic efficiency of 92.8%at 2.4 V_(cell).We assumed that these results contributed from the crystal planes on the surface of the Cu-Pd alloy.The phases of the Cu-Pd alloy catalyst were partially separated through annealing to fabricate a catalyst with high selectivity for CO at low voltage and C_(2)H_4 at high voltage.The results of CO-stripping testing confirmed that when Cu partially separates from the lattice of the Cu-Pd alloy,the desorption of~*CO is suppressed,suggesting that C-C coupling reaction is favored.展开更多
As primary separators in pressurized water reactors (PWRs), cyclone separators separate most of the water from vapor-water two-phase mixture, which is important to the safety and economics of nuclear power plants. To ...As primary separators in pressurized water reactors (PWRs), cyclone separators separate most of the water from vapor-water two-phase mixture, which is important to the safety and economics of nuclear power plants. To improve the performance of cyclone separators, we tested new structures in this study, e.g. porosity and inclined angle of the separator wall. Under different structures, separation efficiency and pressure drop were studied theoretically and experimentally. Results show that each of the structural parameters has an effect on separator performance, but none of the trends is monotonically in experimental ranges. Besides separator structures, the comprehensive performance is also determined by flow patterns. From segregated to homogeneous flow, the separation ability decreases. The separation efficiency is about 5% higher at 20° inclined angle when the superficial velocities are 0.012 and 16 m·s-1 for the liquid and gas, respectively. The separation efficiency is only 91% without an impeller, while it is up to 100% at the same superficial velocities of air and water, 16 and 0.015 m·s-1 , respectively. Based on the study, it is promising to understand deeply the separation mechanism and further to provide data for designing large-scaled separators for advanced pressurized water reactors.展开更多
A new capillary gas chromatography stationary phase, monokis (2,6 di O benzyl 3 O propyl (3’)) hexakis(2,6 di O benzyl 3 O methyl) β CD bonded polysiloxane, was synthesized. It ex...A new capillary gas chromatography stationary phase, monokis (2,6 di O benzyl 3 O propyl (3’)) hexakis(2,6 di O benzyl 3 O methyl) β CD bonded polysiloxane, was synthesized. It exhibited separation abilities to disubstituted benzene isomers and some chiral solutes. It was also found that the polarity of CD derivatives can be lowered both by chemically bonding it to polysiloxane and by diluting it in polysiloxane. The separation abilities of the polysiloxane anchored CDs (SP CD) are higher than that of the unbonded CDs (S CD) and the diluted S CD at lower column temperature. Hydrosilylation reaction is one of the best methods to lower the operating temperature of CDs.展开更多
Microporous carbon nanofibers (MCNFs) derived from polyacrylonitrile nanofibers were fabricated via electrospinning technology and phase separation in the presence of polyvinylpyrrolidone (PVP). PVP together with a mi...Microporous carbon nanofibers (MCNFs) derived from polyacrylonitrile nanofibers were fabricated via electrospinning technology and phase separation in the presence of polyvinylpyrrolidone (PVP). PVP together with a mixed solvent of N, N-Dimethylformamide and dimethyl sulfoxide was used as pore forming agent. The influences of PVP content in casting solution on the structure and electrochemical performance of the MCNFs were also investigated. The highest capacitance of 200 F/g was obtained on a three-electrode system at a scan rate of 0.5 A/g. The good performance was owing to the high specific surface area and the large amount of micro-pores, which enhanced the absorption and the transportation efficiency of electrolyte ion during charge/discharge process. This research indicated that the combination of electrospinning and phase separation technology could be used to fabricate microporous carbon nanofibers as electrode materials for supercapacitors with high specific surface area and outstanding electrochemical performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.展开更多
The dynamic scaling behaviour of late-stage phase separation and coarsening mechanisms of L12 and D022 in Ni75AlxV25-x (3 ≤ x ≤ 10, at.%) alloys are studied using the microscopic phase-field dynamic model. The mic...The dynamic scaling behaviour of late-stage phase separation and coarsening mechanisms of L12 and D022 in Ni75AlxV25-x (3 ≤ x ≤ 10, at.%) alloys are studied using the microscopic phase-field dynamic model. The microelaso ticity field is incorporated into the diffusion dynamic model. The results show the morphology and coarsening dynamics being greatly changed by the elastic interactions among different precipitates, the particles aligning along the dominant directions, the average domain size (ADS) of L12 and D022 deviating from the exponent of temporal power-law, and the growth slowing down due to the increasing of elastic interactions. The dynamic scaling regime of late-stage coarsening of the precipitates is attained. Thus the scaling behaviour of structure function is also applicable for elastic interaction systems. It is also found that the variations of ADS and scaling function depend on the volume fraction of precipitates.展开更多
Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters us...Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters used in the West-East natural gas transmission project. The comparison of the original pressure drop of clean filters and the evolution of pressure drop as liquid droplets deposited in the filter media are described. The original pressure drops of these filters were similar but the pressure drops at a steady state were different. Fractional efficiency was used to study the separation performance of cartridge filters. Droplets at the outlet of the filters had small diameters, no more than 3 μm, but were very numerous. The effect of filtration velocity on gas-liquid separation performance was analyzed. Higher filtration velocity indicated better gas-liquid separation performance. Finally the quality factor related to pressure drop and filtration efficiency was applied to evaluate the gas-liquid separation performance.展开更多
A new method based on phase difference analysis is proposed for the single-channel mixed signal separation of single-channel radar fuze.This method is used to estimate the mixing coefficients of de-noised signals thro...A new method based on phase difference analysis is proposed for the single-channel mixed signal separation of single-channel radar fuze.This method is used to estimate the mixing coefficients of de-noised signals through the cumulants of mixed signals,solve the candidate data set by the mixing coefficients and signal analytical form,and resolve the problem of vector ambiguity by analyzing the phase differences.The signal separation is realized by exchanging data of the solutions.The waveform similarity coefficients are calculated,and the time鈥攆requency distributions of separated signals are analyzed.The results show that the proposed method is effective.展开更多
The metastable liquid phase separation and rapid solidification behaviors of Co_(40) Fe_(40) Cu_(20) alloy were investigated by using differential thermal analysis(DTA) in combination with glass fluxing and el...The metastable liquid phase separation and rapid solidification behaviors of Co_(40) Fe_(40) Cu_(20) alloy were investigated by using differential thermal analysis(DTA) in combination with glass fluxing and electromagnetic levitation(EML) techniques. The critical liquid phase separation undercooling for this alloy was determined by DTA to be 174 K. Macrosegregation morphologies are formed in the bulk samples processed by both DTA and EML. It is revealed that undercooling level, cooling rate, convection, and surface tension difference between the two separated phases play a dominant role in the coalescence and segregation of the separated phases. The growth velocity of the(Fe,Co) dendrite has been measured as a function of undercooling up to 275 K. The temperature rise resulting from recalescence increases linearly with the increase of undercooling because of the enhancement of recalescence. The slope change of the recalescence temperature rise versus undercooling at the critical undercooling also implies the occurrence of liquid demixing.展开更多
In this paper, we report a high-perfornmnce P3HT/PCBM bulk-heterojunction solar cell with a power conversion efficiency of 4.85% fabricated by adjusting the polymer crystallinity and nanoscale phase separation using a...In this paper, we report a high-perfornmnce P3HT/PCBM bulk-heterojunction solar cell with a power conversion efficiency of 4.85% fabricated by adjusting the polymer crystallinity and nanoscale phase separation using an ultrasonic irradiation mixing approach for the polymer. The grazing incidence X-ray diffraction, UV/Vis spectroscopic, and atomic force microscopic measurement results for the P3HT/PCBM blend films reveal that the P3HT/PCBM film fabricated by ultrasonic irradiation mixing of the P3HT and PCBM solutions for 10 min has a higher degree of crystallinity, a higher absorption efficiency, and better phase separation, which together account for the higher charge transport properties and photovoltaic cell performance.展开更多
Computer simulations were performed to study the dense mixtures of passive particles and active particles in two dimensions.Two systems with different kinds of passive particles(e.g.,spherical particles and rod-like p...Computer simulations were performed to study the dense mixtures of passive particles and active particles in two dimensions.Two systems with different kinds of passive particles(e.g.,spherical particles and rod-like particles)were considered.At small active forces,the high-density and low-density regions emerge in both systems,indicating a phase separation.At higher active forces,the systems return to a homogeneous state with large fluctuation of particle area in contrast with the thermo-equilibrium state.Structurally,the rod-like particles accumulate loosely due to the shape anisotropy compared with the spherical particles at the high-density region.Moreover,there exists a positive correlation between Voronoi area and velocity of the particles.Additionally,a small number of active particles capably give rise to super-diffusion of passive particles in both systems when the self-propelled force is turned on.展开更多
The phenomenon of phase separation into antiferromagnetic(AFM) and superconducting(SC) or normal-state regions has great implication for the origin of high-temperature(high-T_c) superconductivity. However, the o...The phenomenon of phase separation into antiferromagnetic(AFM) and superconducting(SC) or normal-state regions has great implication for the origin of high-temperature(high-T_c) superconductivity. However, the occurrence of an intrinsic antiferromagnetism above the T_c of(Li,Fe)OHFe Se superconductor is questioned. Here we report a systematic study on a series of(Li,Fe)OHFe Se single crystal samples with T_c up to ~41 K. We observe an evident drop in the static magnetization at T_(afm) ~ 125 K, in some of the SC(T_c 38 K, cell parameter c■9.27 ?) and non-SC samples. We verify that this AFM signal is intrinsic to(Li,Fe)OHFe Se. Thus, our observations indicate mesoscopic-to-macroscopic coexistence of an AFM state with the normal(below T_(afm)) or SC(below T_c) state in(Li,Fe)OHFe Se. We explain such coexistence by electronic phase separation, similar to that in high-T_c cuprates and iron arsenides. However, such an AFM signal can be absent in some other samples of(Li,Fe)OHFe Se, particularly it is never observed in the SC samples of T_c 38 K, owing to a spatial scale of the phase separation too small for the macroscopic magnetic probe. For this case, we propose a microscopic electronic phase separation. The occurrence of two-dimensional AFM spin fluctuations below nearly the same temperature as T_(afm), reported previously for a(Li,Fe)OHFe Se(T_c ~ 42 K) single crystal, suggests that the microscopic static phase separation reaches vanishing point in high T_c(Li,Fe)OHFe Se. A complete phase diagram is thus established. Our study provides key information of the underlying physics for high-T_c superconductivity.展开更多
Control of purity and entanglement of two two-qubits dispersively coupled to a field with a reservoir are investigated.Initially the qubits are entangled,while the field is either in a coherent state or a statistical ...Control of purity and entanglement of two two-qubits dispersively coupled to a field with a reservoir are investigated.Initially the qubits are entangled,while the field is either in a coherent state or a statistical mixture of two coherent states.For an alternative entanglement measure we calculate the negativity of the eigenvalues of the partially transposed density matrix.A measure related to the mutual entropy,namely the index of entropy,is employed to measure the entanglement.Its results agree well with the negativity.It is found that the entanglement and purity have strong sensitivity to phase damping.The asymptotic behaviour of the states of the field,the two two-qubits,and the total system fall into mixed states.展开更多
A three-terminal device based on electronic phase separated manganites is suggested to produce high performance resistive switching. Our Monte Carlo simulations reveal that the conductive filaments can be formed/annih...A three-terminal device based on electronic phase separated manganites is suggested to produce high performance resistive switching. Our Monte Carlo simulations reveal that the conductive filaments can be formed/annihilated by reshaping the ferromagnetic metal phase domains with two cross-oriented switching voltages. Besides, by controlling the high resistance state(HRS) to a stable state that just after the filament is ruptured, the resistive switching remains stable and reversible, while the switching voltage and the switching time can be greatly reduced.展开更多
This paper proposes a simple method to achieve the optical transfer function of a circular pupil wavefront coding system with a separable phase mask in Cartesian coordinates. Based on the stationary phase method, the ...This paper proposes a simple method to achieve the optical transfer function of a circular pupil wavefront coding system with a separable phase mask in Cartesian coordinates. Based on the stationary phase method, the optical transfer function of the circular pupil system can be easily obtained from the optical transfer function of the rectangular pupil system by modifying the cut-off frequency and the on-axial modulation transfer function. Finally, a system with a cubic phase mask is used as an example to illustrate the way to achieve the optical transfer function of the circular pupil system from the rectangular pupil system.展开更多
The photoluminescence(PL) properties of a green and blue light-emitting InGaN/GaN multiple quantum well structure with a strong phase separated into quasi-quantum dots(QDs) and an InGaN matrix in the InGaN epilaye...The photoluminescence(PL) properties of a green and blue light-emitting InGaN/GaN multiple quantum well structure with a strong phase separated into quasi-quantum dots(QDs) and an InGaN matrix in the InGaN epilayer are investigated.The excitation power dependences of QD-related green emissions(PD〉) and matrix-related blue emissions(PM) in the low excitation power range of the PL peak energy and line-width indicate that at 6 K both Pm and PD are dominated by the combined action of Coulomb screening and localized state filling effect.However,at 300 K,Pm is dominated by the non-radiative recombination of the carriers in the InGaN matrix,while PD is influenced by the carriers transferred from the shallower QDs to deeper QDs by tunnelling.This is consistent with the excitation power dependence of the PL efficiency for the emission.展开更多
(Fe50Co25B15Si10)80Cu20 ribbons are prepared by using the single-roller melt-spinning method. A dual-layer structure consisting of a (Fe, Co)-rich amorphous phase and a Cu-rich crystalline phase forms due to metas...(Fe50Co25B15Si10)80Cu20 ribbons are prepared by using the single-roller melt-spinning method. A dual-layer structure consisting of a (Fe, Co)-rich amorphous phase and a Cu-rich crystalline phase forms due to metastable liquid phase separation before solidification. The magnetic hysteresis loops of the as-quenched and annealed samples are measured at room temperature. It is indicated that the coercivity of the ribbon is almost zero in the as-quenched state. The crystallization leads to the increase of coercivity and decrease of saturation magnetization.展开更多
Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observ...Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observed and the characteristic metal-insulator transition temperature Tp was also shifted. The changes of both the resistance and Tp, suggest that the electric field induced not only tuning of the carrier density but also rebalancing of the phase separation states. The change of the charge-ordered insulating phase fraction was estimated to be temperature dependent, and a maximum of 16% was achieved in the phase separation regime. This tuning effect was partially irreversible, which might be due to an oxygen vacancy migration that is driven by the huge applied electric field.展开更多
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.RS-2023-00213920,NRF-2021R1A4A1031761).
文摘Herein,the impact of the independent control of processing additives on vertical phase separation in sequentially deposited (SD) organic photovoltaics (OPVs) and its subsequent effects on charge carrier kinetics at the electron donor-acceptor interface are investigated.The film morphology exhibits notable variations,significantly depending on the layer to which 1,8-diiodooctane (DIO) was applied.Grazing incidence wide-angle X-ray scattering analysis reveals distinctly separated donor/acceptor phases and vertical crystallinity details in SD films.Time-of-flight secondary ion mass spectrometry analysis is employed to obtain component distributions in diverse vertical phase structures of SD films depending on additive control.In addition,nanosecond transient absorption spectroscopy shows that DIO control significantly affects the dynamics of separated charges in SD films.In SD OPVs,DIO appears to act through distinct mechanisms with minimal restriction,depending on the applied layer.This study emphasizes the significance of morphological optimization in improving device performance and underscores the importance of independent additive control in the advancement of OPV technology.
基金supported by Wuxi HIT New Material Research Institute and China Academy of Engineering Physics。
文摘Herein, the effect of fluoropolymer binders on the properties of polymer-bonded explosives(PBXs) was comprehensively investigated. To this end, fluorinated semi-interpenetrating polymer networks(semiIPNs) were prepared using different catalyst amounts(denoted as F23-CLF-30-D). The involved curing and phase separation processes were monitored using Fourier-transform infrared spectroscopy, differential scanning calorimetry, a haze meter and a rheometer. Curing rate constant and activation energy were calculated using a theoretical model and numerical method, respectively. Results revealed that owing to its co-continuous micro-phase separation structure, the F23-CLF-30-D3 semi-IPN exhibited considerably higher tensile strength and elongation at break than pure fluororubber F2314 and the F23-CLF-30-D0 semi-IPN because the phase separation and curing rates matched in the initial stage of curing.An arc Brazilian test revealed that F23-CLF-30-D-based composites used as mock materials for PBXs exhibited excellent mechanical performance and storage stability. Thus, the matched curing and phase separation rates play a crucial role during the fabrication of high-performance semi-IPNs;these factors can be feasibly controlled using an appropriate catalyst amount.
基金Project supported by the National Natural Science Foundation of China(Grant No.11702289)the Key Core Technology and Generic Technology Research and Development Project of Shanxi Province,China(Grant No.2020XXX013)。
文摘Although phase separation is a ubiquitous phenomenon, the interactions between multiple components make it difficult to accurately model and predict. In recent years, machine learning has been widely used in physics simulations. Here,we present a physical information-enhanced graph neural network(PIENet) to simulate and predict the evolution of phase separation. The accuracy of our model in predicting particle positions is improved by 40.3% and 51.77% compared with CNN and SVM respectively. Moreover, we design an order parameter based on local density to measure the evolution of phase separation and analyze the systematic changes with different repulsion coefficients and different Schmidt numbers.The results demonstrate that our model can achieve long-term accurate predictions of order parameters without requiring complex handcrafted features. These results prove that graph neural networks can become new tools and methods for predicting the structure and properties of complex physical systems.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government MSIT(2021R1A2C2093358,2021R1A4A3027878,2022M3I3A1081901)financial support from the Lotte Chemical Company。
文摘Cu catalysts can convert CO_(2) through an electrochemical reduction reaction into a variety of useful carbon-based products.However,this capability provides an obstacle to increasing the selectivity for a single product.Herein,we report a simple fabrication method for a Cu-Pd alloy catalyst for use in a membrane electrode assembly(MEA)-based CO_(2) electrolyzer for the electrochemical CO_(2) reduction reaction(ECRR)with high selectivity for CO production.When the composition of the Cu-Pd alloy catalyst was fabricated at 6:4,the selectivity for CO increased and the production of multi-carbon compounds and hydrogen is suppressed.Introducing a Cu-Pd alloy catalyst with 6:4 ratio as the cathode of the MEAbased CO_(2) electrolyzer showed a CO faradaic efficiency of 92.8%at 2.4 V_(cell).We assumed that these results contributed from the crystal planes on the surface of the Cu-Pd alloy.The phases of the Cu-Pd alloy catalyst were partially separated through annealing to fabricate a catalyst with high selectivity for CO at low voltage and C_(2)H_4 at high voltage.The results of CO-stripping testing confirmed that when Cu partially separates from the lattice of the Cu-Pd alloy,the desorption of~*CO is suppressed,suggesting that C-C coupling reaction is favored.
基金Supported by National Natural Science Foundation of China (No. 51006068)Science and Technology on Reactor System Design Technology Laboratory,Nuclear Power Institute of China
文摘As primary separators in pressurized water reactors (PWRs), cyclone separators separate most of the water from vapor-water two-phase mixture, which is important to the safety and economics of nuclear power plants. To improve the performance of cyclone separators, we tested new structures in this study, e.g. porosity and inclined angle of the separator wall. Under different structures, separation efficiency and pressure drop were studied theoretically and experimentally. Results show that each of the structural parameters has an effect on separator performance, but none of the trends is monotonically in experimental ranges. Besides separator structures, the comprehensive performance is also determined by flow patterns. From segregated to homogeneous flow, the separation ability decreases. The separation efficiency is about 5% higher at 20° inclined angle when the superficial velocities are 0.012 and 16 m·s-1 for the liquid and gas, respectively. The separation efficiency is only 91% without an impeller, while it is up to 100% at the same superficial velocities of air and water, 16 and 0.015 m·s-1 , respectively. Based on the study, it is promising to understand deeply the separation mechanism and further to provide data for designing large-scaled separators for advanced pressurized water reactors.
文摘A new capillary gas chromatography stationary phase, monokis (2,6 di O benzyl 3 O propyl (3’)) hexakis(2,6 di O benzyl 3 O methyl) β CD bonded polysiloxane, was synthesized. It exhibited separation abilities to disubstituted benzene isomers and some chiral solutes. It was also found that the polarity of CD derivatives can be lowered both by chemically bonding it to polysiloxane and by diluting it in polysiloxane. The separation abilities of the polysiloxane anchored CDs (SP CD) are higher than that of the unbonded CDs (S CD) and the diluted S CD at lower column temperature. Hydrosilylation reaction is one of the best methods to lower the operating temperature of CDs.
基金supported by the National Natural Science Foundation of China(51203071,51363014 and 51362018)China Postdoctoral Science Foundation(2014M552509)+2 种基金the Opening Project of State Key Laboratory of Polymer Materials Engineering(Sichuan University)(sklpme2014-4-25)the Program for Hongliu Distinguished Young Scholars in Lanzhou University of Technology(J201402)the University Scientific Research Project of Gansu Province(2014B-025)
文摘Microporous carbon nanofibers (MCNFs) derived from polyacrylonitrile nanofibers were fabricated via electrospinning technology and phase separation in the presence of polyvinylpyrrolidone (PVP). PVP together with a mixed solvent of N, N-Dimethylformamide and dimethyl sulfoxide was used as pore forming agent. The influences of PVP content in casting solution on the structure and electrochemical performance of the MCNFs were also investigated. The highest capacitance of 200 F/g was obtained on a three-electrode system at a scan rate of 0.5 A/g. The good performance was owing to the high specific surface area and the large amount of micro-pores, which enhanced the absorption and the transportation efficiency of electrolyte ion during charge/discharge process. This research indicated that the combination of electrospinning and phase separation technology could be used to fabricate microporous carbon nanofibers as electrode materials for supercapacitors with high specific surface area and outstanding electrochemical performance. (C) 2016 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights reserved.
基金Project supported by the National Natural Science Foundation of China (Grant No 50071046) and the National High Technology and Development Program of China (Grant No 2002AA331050), and the Doctorate Foundation of Northwestern Polytechnical University of China (Grant No CX200507).
文摘The dynamic scaling behaviour of late-stage phase separation and coarsening mechanisms of L12 and D022 in Ni75AlxV25-x (3 ≤ x ≤ 10, at.%) alloys are studied using the microscopic phase-field dynamic model. The microelaso ticity field is incorporated into the diffusion dynamic model. The results show the morphology and coarsening dynamics being greatly changed by the elastic interactions among different precipitates, the particles aligning along the dominant directions, the average domain size (ADS) of L12 and D022 deviating from the exponent of temporal power-law, and the growth slowing down due to the increasing of elastic interactions. The dynamic scaling regime of late-stage coarsening of the precipitates is attained. Thus the scaling behaviour of structure function is also applicable for elastic interaction systems. It is also found that the variations of ADS and scaling function depend on the volume fraction of precipitates.
文摘Fibrous filters are often used to remove contaminants including both dusts and liquid droplets from natural gas. This paper aims to evaluate the gas-liquid separation performance of three types of cartridge filters used in the West-East natural gas transmission project. The comparison of the original pressure drop of clean filters and the evolution of pressure drop as liquid droplets deposited in the filter media are described. The original pressure drops of these filters were similar but the pressure drops at a steady state were different. Fractional efficiency was used to study the separation performance of cartridge filters. Droplets at the outlet of the filters had small diameters, no more than 3 μm, but were very numerous. The effect of filtration velocity on gas-liquid separation performance was analyzed. Higher filtration velocity indicated better gas-liquid separation performance. Finally the quality factor related to pressure drop and filtration efficiency was applied to evaluate the gas-liquid separation performance.
文摘A new method based on phase difference analysis is proposed for the single-channel mixed signal separation of single-channel radar fuze.This method is used to estimate the mixing coefficients of de-noised signals through the cumulants of mixed signals,solve the candidate data set by the mixing coefficients and signal analytical form,and resolve the problem of vector ambiguity by analyzing the phase differences.The signal separation is realized by exchanging data of the solutions.The waveform similarity coefficients are calculated,and the time鈥攆requency distributions of separated signals are analyzed.The results show that the proposed method is effective.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB1100101)the National Natural Science Foundation of China(Grant No.51471135)+2 种基金Shenzhen Science and Technology Program,China(Grant No.JCYJ20170815162201821)Shaanxi Provincial Key R&D Program,China(Grant No.2017KW-ZD-07)the Fundamental Research Funds for the Central Universities,China(Grant No.31020170QD102)
文摘The metastable liquid phase separation and rapid solidification behaviors of Co_(40) Fe_(40) Cu_(20) alloy were investigated by using differential thermal analysis(DTA) in combination with glass fluxing and electromagnetic levitation(EML) techniques. The critical liquid phase separation undercooling for this alloy was determined by DTA to be 174 K. Macrosegregation morphologies are formed in the bulk samples processed by both DTA and EML. It is revealed that undercooling level, cooling rate, convection, and surface tension difference between the two separated phases play a dominant role in the coalescence and segregation of the separated phases. The growth velocity of the(Fe,Co) dendrite has been measured as a function of undercooling up to 275 K. The temperature rise resulting from recalescence increases linearly with the increase of undercooling because of the enhancement of recalescence. The slope change of the recalescence temperature rise versus undercooling at the critical undercooling also implies the occurrence of liquid demixing.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60871007)
文摘In this paper, we report a high-perfornmnce P3HT/PCBM bulk-heterojunction solar cell with a power conversion efficiency of 4.85% fabricated by adjusting the polymer crystallinity and nanoscale phase separation using an ultrasonic irradiation mixing approach for the polymer. The grazing incidence X-ray diffraction, UV/Vis spectroscopic, and atomic force microscopic measurement results for the P3HT/PCBM blend films reveal that the P3HT/PCBM film fabricated by ultrasonic irradiation mixing of the P3HT and PCBM solutions for 10 min has a higher degree of crystallinity, a higher absorption efficiency, and better phase separation, which together account for the higher charge transport properties and photovoltaic cell performance.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.21674078,21474074,21574096,21774091,and 21374073)Overseas Research Program of Jiangsu,China(2019).
文摘Computer simulations were performed to study the dense mixtures of passive particles and active particles in two dimensions.Two systems with different kinds of passive particles(e.g.,spherical particles and rod-like particles)were considered.At small active forces,the high-density and low-density regions emerge in both systems,indicating a phase separation.At higher active forces,the systems return to a homogeneous state with large fluctuation of particle area in contrast with the thermo-equilibrium state.Structurally,the rod-like particles accumulate loosely due to the shape anisotropy compared with the spherical particles at the high-density region.Moreover,there exists a positive correlation between Voronoi area and velocity of the particles.Additionally,a small number of active particles capably give rise to super-diffusion of passive particles in both systems when the self-propelled force is turned on.
基金Supported by the National Key Research and Development Program of China under Grant Nos 2017YFA0303003,2016YFA0300300 and 2015CB921000the National Natural Science Foundation of China under Grant Nos 11574370,11474338,11674374 and 61501220+1 种基金the Strategic Priority Research Program and Key Research Program of Frontier Sciences of the Chinese Academy of Sciences under Grant Nos QYZDY-SSW-SLH001,QYZDY-SSW-SLH008 and XDB07020100the Beijing Municipal Science and Technology Project under Grant No Z161100002116011
文摘The phenomenon of phase separation into antiferromagnetic(AFM) and superconducting(SC) or normal-state regions has great implication for the origin of high-temperature(high-T_c) superconductivity. However, the occurrence of an intrinsic antiferromagnetism above the T_c of(Li,Fe)OHFe Se superconductor is questioned. Here we report a systematic study on a series of(Li,Fe)OHFe Se single crystal samples with T_c up to ~41 K. We observe an evident drop in the static magnetization at T_(afm) ~ 125 K, in some of the SC(T_c 38 K, cell parameter c■9.27 ?) and non-SC samples. We verify that this AFM signal is intrinsic to(Li,Fe)OHFe Se. Thus, our observations indicate mesoscopic-to-macroscopic coexistence of an AFM state with the normal(below T_(afm)) or SC(below T_c) state in(Li,Fe)OHFe Se. We explain such coexistence by electronic phase separation, similar to that in high-T_c cuprates and iron arsenides. However, such an AFM signal can be absent in some other samples of(Li,Fe)OHFe Se, particularly it is never observed in the SC samples of T_c 38 K, owing to a spatial scale of the phase separation too small for the macroscopic magnetic probe. For this case, we propose a microscopic electronic phase separation. The occurrence of two-dimensional AFM spin fluctuations below nearly the same temperature as T_(afm), reported previously for a(Li,Fe)OHFe Se(T_c ~ 42 K) single crystal, suggests that the microscopic static phase separation reaches vanishing point in high T_c(Li,Fe)OHFe Se. A complete phase diagram is thus established. Our study provides key information of the underlying physics for high-T_c superconductivity.
文摘Control of purity and entanglement of two two-qubits dispersively coupled to a field with a reservoir are investigated.Initially the qubits are entangled,while the field is either in a coherent state or a statistical mixture of two coherent states.For an alternative entanglement measure we calculate the negativity of the eigenvalues of the partially transposed density matrix.A measure related to the mutual entropy,namely the index of entropy,is employed to measure the entanglement.Its results agree well with the negativity.It is found that the entanglement and purity have strong sensitivity to phase damping.The asymptotic behaviour of the states of the field,the two two-qubits,and the total system fall into mixed states.
基金supported by the National Basic Research Program of China(Grant No.2011CB922101)the National Natural Science Foundation of China(Grant Nos.51301084 and 11234005)+1 种基金the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130576)Program for Changjiang Scholars and Innovative Research Team in University,China(Grant No.IRT1243)
文摘A three-terminal device based on electronic phase separated manganites is suggested to produce high performance resistive switching. Our Monte Carlo simulations reveal that the conductive filaments can be formed/annihilated by reshaping the ferromagnetic metal phase domains with two cross-oriented switching voltages. Besides, by controlling the high resistance state(HRS) to a stable state that just after the filament is ruptured, the resistive switching remains stable and reversible, while the switching voltage and the switching time can be greatly reduced.
基金Project supported by the Natural Science Foundation of Zhejiang Province,China (Grant No. Y1110455)the Scientific Research Fund of Educational Department of Zhejiang Province,China (Grant No. Y200909691)the Science Foundation of Zhejiang Sci-Tech University (Grant No. 0913849-Y)
文摘This paper proposes a simple method to achieve the optical transfer function of a circular pupil wavefront coding system with a separable phase mask in Cartesian coordinates. Based on the stationary phase method, the optical transfer function of the circular pupil system can be easily obtained from the optical transfer function of the rectangular pupil system by modifying the cut-off frequency and the on-axial modulation transfer function. Finally, a system with a cubic phase mask is used as an example to illustrate the way to achieve the optical transfer function of the circular pupil system from the rectangular pupil system.
基金supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20120131110006)the Key Science and Technology Program of Shandong Province,China(Grant No.2013GGX10221)+2 种基金the Key Laboratory of Functional Crystal Materials and Device(Shandong University,Ministry of Education)(Grant No.JG1401)the Major Research Plan of the National Natural Science Foundation of China(Grant No.91433112)the National Natural Science Foundation of China(Grant No.61306113)
文摘The photoluminescence(PL) properties of a green and blue light-emitting InGaN/GaN multiple quantum well structure with a strong phase separated into quasi-quantum dots(QDs) and an InGaN matrix in the InGaN epilayer are investigated.The excitation power dependences of QD-related green emissions(PD〉) and matrix-related blue emissions(PM) in the low excitation power range of the PL peak energy and line-width indicate that at 6 K both Pm and PD are dominated by the combined action of Coulomb screening and localized state filling effect.However,at 300 K,Pm is dominated by the non-radiative recombination of the carriers in the InGaN matrix,while PD is influenced by the carriers transferred from the shallower QDs to deeper QDs by tunnelling.This is consistent with the excitation power dependence of the PL efficiency for the emission.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51171152 and 50871088)the Foundation for Fundamental Research of Northwestern Polytechnic University,China (Grant No. JC201268)the Fund of the State Key Laboratory of Solidification Processing,China (Grant No. SKLSP201202)
文摘(Fe50Co25B15Si10)80Cu20 ribbons are prepared by using the single-roller melt-spinning method. A dual-layer structure consisting of a (Fe, Co)-rich amorphous phase and a Cu-rich crystalline phase forms due to metastable liquid phase separation before solidification. The magnetic hysteresis loops of the as-quenched and annealed samples are measured at room temperature. It is indicated that the coercivity of the ribbon is almost zero in the as-quenched state. The crystallization leads to the increase of coercivity and decrease of saturation magnetization.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00106 and 2014CB921401)the National Natural Science Foundation of China(Grant Nos.11174342,9131208,and 11374344)
文摘Electric double-layer field effect experiments were performed on ultrathin films of La0.325Pr0.3Ca0.375MnO3, which is noted for its micrometer-scale phase separation. A clear change of resistance up to 220% was observed and the characteristic metal-insulator transition temperature Tp was also shifted. The changes of both the resistance and Tp, suggest that the electric field induced not only tuning of the carrier density but also rebalancing of the phase separation states. The change of the charge-ordered insulating phase fraction was estimated to be temperature dependent, and a maximum of 16% was achieved in the phase separation regime. This tuning effect was partially irreversible, which might be due to an oxygen vacancy migration that is driven by the huge applied electric field.