Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper w...Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper we apply the fractional flow theory to multiphase flow in pipes and present a unified modeling framework for predicting the fluid phase volume fractions over a broad range of pipe flow conditions.Compared to existing methods and correlations,this new framework provides a simple,approximate,and efficient way to estimate the phase volume fraction in two-phase pipe flow without invoking flow patterns.Notably,existing correlations for estimating phase volume fraction can be transformed and expressed under this modeling framework.Different fractional flow models are applicable to different flow conditions,and they demonstrate good agreement against experimental data within 5%errors when compared with an experimental database comprising of 2754 data groups from 14literature sources,covering various pipe geometries,flow patterns,fluid properties and flow inclinations.The gas void fraction predicted by the framework developed in this work can be used as inputs to reliably model the hydraulic and thermal behaviors of two-phase pipe flows.展开更多
Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and press...Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.展开更多
This paper is concerned with a remedy for interface smearing,which is usable when fixed (i.e. non moving and so non conforming) grids are employed. It is simple to employ and has been found to be rather effective. T...This paper is concerned with a remedy for interface smearing,which is usable when fixed (i.e. non moving and so non conforming) grids are employed. It is simple to employ and has been found to be rather effective. The paper explains its principle, describes how it has been implemented and presents some results obtained with its assistance. The results are compared both with those of earlier methods of interface motion calculation and with experimental data.展开更多
An investigation on phase distribution in air-water two-phase flow in horizontal circular channel was conducted by using the double-sensor resistivity probe.The variations of phase distribution with variations of gas ...An investigation on phase distribution in air-water two-phase flow in horizontal circular channel was conducted by using the double-sensor resistivity probe.The variations of phase distribution with variations of gas and liquid volumetric fluxes were analyzed and the present data were compared with some of other researcher’s data and existing models. It was found there exists more complicated phase distribution pattern in horizontal flow system than in vertical flow. The radial local void fraction profiles are similar at the same measurement angle with various gas and liquid flow rates. However, an asymmetric profile can be observed at a given slice of the pipe cross-section.展开更多
Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid pa...Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).展开更多
The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow...The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow regimes data of other GLCC positions from other literatures in existence,the gas and liquid superficial velocities and pressure drops are used as the input of the machine learning algorithms respectively which are applied to identify the flow regimes.The choosing of input data types takes the availability of data for practical industry fields into consideration,and the twelve machine learning algorithms are chosen from the classical and popular algorithms in the area of classification,including the typical ensemble models,SVM,KNN,Bayesian Model and MLP.The results of flow regimes identification show that gas and liquid superficial velocities are the ideal type of input data for the flow regimes identification by machine learning.Most of the ensemble models can identify the flow regimes of GLCC by gas and liquid velocities with the accuracy of 0.99 and more.For the pressure drops as the input of each algorithm,it is not the suitable as gas and liquid velocities,and only XGBoost and Bagging Tree can identify the GLCC flow regimes accurately.The success and confusion of each algorithm are analyzed and explained based on the experimental phenomena of flow regimes evolution processes,the flow regimes map,and the principles of algorithms.The applicability and feasibility of each algorithm according to different types of data for GLCC flow regimes identification are proposed.展开更多
A new model of particle yield stress including cohesive strength is proposed,which considers the friction and cohesive strength between particles.A calculation method for the fluidization process of liquid–solid two-...A new model of particle yield stress including cohesive strength is proposed,which considers the friction and cohesive strength between particles.A calculation method for the fluidization process of liquid–solid two-phase flow in compact packing state is given,and the simulation and experimental studies of fluidization process are carried out by taking the sand–water two-phase flow in the jet dredging system as an example,and the calculation method is verified.展开更多
Aim To develop a hydrodynamic model on the void fraction in liquid slugs for gas liquid slug flow in vertical tubes. Methods Developing the model by considering the gas exchange between the Taylor bubble and the fo...Aim To develop a hydrodynamic model on the void fraction in liquid slugs for gas liquid slug flow in vertical tubes. Methods Developing the model by considering the gas exchange between the Taylor bubble and the following liquid slug. Results Some experimental data are obtained to check the model. In comparison with previous published results, the predictions from this model are better and in good agreement with the experimental data. The error is within ±20%. Conclusion The proposed model can correctly predict the void fraction in liquid slugs for gas liquid two phase slug flow in vertical tubes.展开更多
It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conser...It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.展开更多
The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mech...The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mechanism models are semi-empirical models,and have to be resolved under different working conditions with complex calculation process.The development of big data technology and artificial intelligence provides the possibility to establish data-driven models.This paper aims to establish a liquid loading prediction model for natural gas pipeline with high generalization ability based on machine learning.First,according to the characteristics of actual gas pipeline,a variety of reasonable combinations of working conditions such as different gas velocity,pipe diameters,water contents and outlet pressures were set,and multiple undulating pipeline topography with different elevation differences was established.Then a large number of simulations were performed by simulator OLGA to obtain the data required for machine learning.After data preprocessing,six supervised learning algorithms,including support vector machine(SVM),decision tree(DT),random forest(RF),artificial neural network(ANN),plain Bayesian classification(NBC),and K nearest neighbor algorithm(KNN),were compared to evaluate the performance of liquid loading prediction.Finally,the RF and KNN with better performance were selected for parameter tuning and then used to the actual pipeline for liquid loading location prediction.Compared with OLGA simulation,the established data-driven model not only improves calculation efficiency and reduces workload,but also can provide technical support for gas pipeline flow assurance.展开更多
A convenient,cost-effective and fast method using dynamic microwave-assisted extraction and liquid phase microextraction based on the solidification of a floating drop was proposed to analyze organochlorine pesticides...A convenient,cost-effective and fast method using dynamic microwave-assisted extraction and liquid phase microextraction based on the solidification of a floating drop was proposed to analyze organochlorine pesticides in grains including rice,maize and millet.Twelve samples can be processed simultaneously in the method.During the extraction process,10%acetonitrile-water solutions containing 110μL of n-hexadecane were used to extract organochlorine pesticides.Subsequently,1.0 g sodium chloride was placed in the extract,and then centrifuged and cooled.The n-hexadecane drops containing the analytes were solidifi ed and transferred for determination by gas chromatography-electron capture detector without any further filtration or cleaning process.Limits of detection for organochlorine pesticides were 0.97–1.01μg/kg and the RSDs were in the range of 2.6%–8.5%.The developed technology has succeeded in analyzing six real grains samples and the recoveries of the organochlorine pesticides were 72.2%–94.3%.Compared with the published extraction methods,the developed method was used to analyze organochlorine pesticides in grains,being more environmentally friendly,which is suitable for the daily determination of organochlorine pesticides.展开更多
The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study o...The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.展开更多
Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wa...Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wall,the influence of the change of the gas-liquid interface configuration on the potential energy,kinetic energy and surface free energy of the two-phase system per unit length of the tube is investigated,and a new model for calculating the gas-liquid distribution at critical conditions is developed by using the principle of minimum energy.Considering the influence of the inclination angle,the calculation model of interfacial friction factor is established,and finally closed the governing equations.The interface shape is more vulnerable to wettability and surface tension at a low liquid holdup,resulting in a curved interface configuration.The interface is more curved when the smaller is the pipe diameter,or the smaller the liquid holdup,or the smaller the deviation angle,or the greater gas velocity,or the greater the gas density.The critical liquid-carrying velocity increases nonlinearly and then decreases with the increase of inclination angle.The inclination corresponding to the maximum critical liquid-carrying velocity increases with the increase of the diameter of the wellbore,and it is also affected by the fluid properties of the gas phase and liquid phase.The mean relative errors for critical liquid-carrying velocity and critical pressure gradient are 1.19%and 3.02%,respectively,and the misclassification rate is 2.38%in the field trial,implying the new model can provide a valid judgement on the liquid loading in inclined gas wells.展开更多
In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by appl...In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by applying the Reynolds-average N-S equation and mixture gas-liquid two-phase flow model,and the compressibility of gas was taken into consideration in the simulation. Then the centrifugal pump characteristic and the gas distribution law in different gas volume fractions were analyzed. The computational results show that gas volume fraction has a certain influence on the performance of the centrifugal pump,and the efficiency and head of the pump are on the decline with the increase of it.Static pressure in the impeller increases in the radial direction,but the pressure gradient in the flow direction is different under the different gas volume fractions. The gas volume is distributed mainly in the ipsilateral direction of impeller back shroud in the flow channel of the volute. On the suction side of the blade inlet there is an obvious low-pressure area,which causes bubbles agglutination and higher gas volume fraction. With the gas entering passage flow,gas volume fraction in the suction decreases and the pressure surface rises gradually. Higher gas volume fraction causes air blocking phenomenon in the flow passage and the discharge capacity reduces. The increase of gas volume makes the turbulent motion within the impeller more and more intense,which leads to more and more energy loss.展开更多
Flow patterns in upstream and downstream straight tubes of sudden-changed areas in a horizontal straight pipe were experimentally examined. Both sudden-expansion cross-section (SECS) and sudden-contraction cross-secti...Flow patterns in upstream and downstream straight tubes of sudden-changed areas in a horizontal straight pipe were experimentally examined. Both sudden-expansion cross-section (SECS) and sudden-contraction cross-section (SCCS) were investigated. The flow pattern maps upstream and downstream were delineated and compared with those in straight tubes with uniform cross-sections. The effects of the SECS and SCCS on flow patterns were discussed and analyzed. Furthermore, flow pattern transition mechanisms resulting in occurrences of different flow patterns were simply discussed and some transition criteria for the flow pattern transitions were deduced by using the non-dimensionlized analysis method.展开更多
基金financial support from the Energize Program between the University of Texas at Austin and Southwest Research InstituteHydraulic Fracturing and Sand Control Industrial Affiliates Program at the University of Texas at Austin for financially supporting this research。
文摘Two-phase pipe flow occurs frequently in oil&gas industry,nuclear power plants,and CCUS.Reliable calculations of gas void fraction(or liquid holdup)play a central role in two-phase pipe flow models.In this paper we apply the fractional flow theory to multiphase flow in pipes and present a unified modeling framework for predicting the fluid phase volume fractions over a broad range of pipe flow conditions.Compared to existing methods and correlations,this new framework provides a simple,approximate,and efficient way to estimate the phase volume fraction in two-phase pipe flow without invoking flow patterns.Notably,existing correlations for estimating phase volume fraction can be transformed and expressed under this modeling framework.Different fractional flow models are applicable to different flow conditions,and they demonstrate good agreement against experimental data within 5%errors when compared with an experimental database comprising of 2754 data groups from 14literature sources,covering various pipe geometries,flow patterns,fluid properties and flow inclinations.The gas void fraction predicted by the framework developed in this work can be used as inputs to reliably model the hydraulic and thermal behaviors of two-phase pipe flows.
基金Supported by National Natural Science Foundation of China(52104049)Young Elite Scientist Sponsorship Program by BAST(BYESS2023262)Science Foundation of China University of Petroleum,Beijing(2462022BJRC004).
文摘Considering the phase behaviors in condensate gas reservoirs and the oil-gas two-phase linear flow and boundary-dominated flow in the reservoir,a method for predicting the relationship between oil saturation and pressure in the full-path of tight condensate gas well is proposed,and a model for predicting the transient production from tight condensate gas wells with multiphase flow is established.The research indicates that the relationship curve between condensate oil saturation and pressure is crucial for calculating the pseudo-pressure.In the early stage of production or in areas far from the wellbore with high reservoir pressure,the condensate oil saturation can be calculated using early-stage production dynamic data through material balance models.In the late stage of production or in areas close to the wellbore with low reservoir pressure,the condensate oil saturation can be calculated using the data of constant composition expansion test.In the middle stages of production or when reservoir pressure is at an intermediate level,the data obtained from the previous two stages can be interpolated to form a complete full-path relationship curve between oil saturation and pressure.Through simulation and field application,the new method is verified to be reliable and practical.It can be applied for prediction of middle-stage and late-stage production of tight condensate gas wells and assessment of single-well recoverable reserves.
文摘This paper is concerned with a remedy for interface smearing,which is usable when fixed (i.e. non moving and so non conforming) grids are employed. It is simple to employ and has been found to be rather effective. The paper explains its principle, describes how it has been implemented and presents some results obtained with its assistance. The results are compared both with those of earlier methods of interface motion calculation and with experimental data.
文摘An investigation on phase distribution in air-water two-phase flow in horizontal circular channel was conducted by using the double-sensor resistivity probe.The variations of phase distribution with variations of gas and liquid volumetric fluxes were analyzed and the present data were compared with some of other researcher’s data and existing models. It was found there exists more complicated phase distribution pattern in horizontal flow system than in vertical flow. The radial local void fraction profiles are similar at the same measurement angle with various gas and liquid flow rates. However, an asymmetric profile can be observed at a given slice of the pipe cross-section.
基金supported by the Fund of Innovation Research Group of National Natural Science Foundation of China (Grant NO.5052160450323001)Major Program of National Natural Science Foundation of China (Grant No.50536020)
文摘Chokes are one of the most important components of downhole flow-control equipment. The particle erosion mathematical model, which considers particle-particle interaction, was established and used to simulate solid particle movement as well as particle erosion characteristics of the solid-liquid two-phase flow in a choke. The corresponding erosion reduction approach by setting ribs on the inner wall of the choke was advanced. This mathematical model includes three parts: the flow field simulation of the continuous carrier fluid by an Eulerian approach, the particle interaction simulation using the discrete particle hard sphere model by a Lagrangian approach and calculation of erosion rate using semiempirical correlations. The results show that particles accumulated in a narrow region from inlet to outlet of the choke and the dominating factor affecting particle motion is the fluid drag force. As a result, the optimization of rib geometrical parameters indicates that good anti-erosion performance can be achieved by four ribs, each of them with a height (H) of 3 mm and a width (B) of 5 mm equaling the interval between ribs (L).
文摘The flow regimes of GLCC with horizon inlet and a vertical pipe are investigated in experiments,and the velocities and pressure drops data labeled by the corresponding flow regimes are collected.Combined with the flow regimes data of other GLCC positions from other literatures in existence,the gas and liquid superficial velocities and pressure drops are used as the input of the machine learning algorithms respectively which are applied to identify the flow regimes.The choosing of input data types takes the availability of data for practical industry fields into consideration,and the twelve machine learning algorithms are chosen from the classical and popular algorithms in the area of classification,including the typical ensemble models,SVM,KNN,Bayesian Model and MLP.The results of flow regimes identification show that gas and liquid superficial velocities are the ideal type of input data for the flow regimes identification by machine learning.Most of the ensemble models can identify the flow regimes of GLCC by gas and liquid velocities with the accuracy of 0.99 and more.For the pressure drops as the input of each algorithm,it is not the suitable as gas and liquid velocities,and only XGBoost and Bagging Tree can identify the GLCC flow regimes accurately.The success and confusion of each algorithm are analyzed and explained based on the experimental phenomena of flow regimes evolution processes,the flow regimes map,and the principles of algorithms.The applicability and feasibility of each algorithm according to different types of data for GLCC flow regimes identification are proposed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11772046)the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.51705342)
文摘A new model of particle yield stress including cohesive strength is proposed,which considers the friction and cohesive strength between particles.A calculation method for the fluidization process of liquid–solid two-phase flow in compact packing state is given,and the simulation and experimental studies of fluidization process are carried out by taking the sand–water two-phase flow in the jet dredging system as an example,and the calculation method is verified.
文摘Aim To develop a hydrodynamic model on the void fraction in liquid slugs for gas liquid slug flow in vertical tubes. Methods Developing the model by considering the gas exchange between the Taylor bubble and the following liquid slug. Results Some experimental data are obtained to check the model. In comparison with previous published results, the predictions from this model are better and in good agreement with the experimental data. The error is within ±20%. Conclusion The proposed model can correctly predict the void fraction in liquid slugs for gas liquid two phase slug flow in vertical tubes.
基金supported by the China National 863 Program (Grant No.2006AA09A106)the Doctoral Program of Higher Education of China (Grant No.20060425502)+1 种基金the National Natural Science Foundation of China (Grant No.50874116)Shandong Province Natural Science Foundation(Grant No.Z2007A01)
文摘It is very important to understand the annular multiphase flow behavior and the effect of hydrate phase transition during deep water drilling. The basic hydrodynamic models, including mass, momentum, and energy conservation equations, were established for annular flow with gas hydrate phase transition during gas kick. The behavior of annular multiphase flow with hydrate phase transition was investigated by analyzing the hydrate-forming region, the gas fraction in the fluid flowing in the annulus, pit gain, bottom hole pressure, and shut-in casing pressure. The simulation shows that it is possible to move the hydrate-forming region away from sea floor by increasing the circulation rate. The decrease in gas volume fraction in the annulus due to hydrate formation reduces pit gain, which can delay the detection of well kick and increase the risk of hydrate plugging in lines. Caution is needed when a well is monitored for gas kick at a relatively low gas production rate, because the possibility of hydrate presence is much greater than that at a relatively high production rate. The shut-in casing pressure cannot reflect the gas kick due to hydrate formation, which increases with time.
基金supported by the National Science and Technology Major Project of China(2016ZX05066005-001)Zhejiang Province Key Research and Development Plan(2021C03152)Zhoushan Science and Technology Project(2021C21011)
文摘The liquid loading is one of the most frequently encountered phenomena in the transportation of gas pipeline,reducing the transmission efficiency and threatening the flow assurance.However,most of the traditional mechanism models are semi-empirical models,and have to be resolved under different working conditions with complex calculation process.The development of big data technology and artificial intelligence provides the possibility to establish data-driven models.This paper aims to establish a liquid loading prediction model for natural gas pipeline with high generalization ability based on machine learning.First,according to the characteristics of actual gas pipeline,a variety of reasonable combinations of working conditions such as different gas velocity,pipe diameters,water contents and outlet pressures were set,and multiple undulating pipeline topography with different elevation differences was established.Then a large number of simulations were performed by simulator OLGA to obtain the data required for machine learning.After data preprocessing,six supervised learning algorithms,including support vector machine(SVM),decision tree(DT),random forest(RF),artificial neural network(ANN),plain Bayesian classification(NBC),and K nearest neighbor algorithm(KNN),were compared to evaluate the performance of liquid loading prediction.Finally,the RF and KNN with better performance were selected for parameter tuning and then used to the actual pipeline for liquid loading location prediction.Compared with OLGA simulation,the established data-driven model not only improves calculation efficiency and reduces workload,but also can provide technical support for gas pipeline flow assurance.
基金The study was financially supported by the National Science and Technology Support Program of China(Grant No.2013BAD16B08).
文摘A convenient,cost-effective and fast method using dynamic microwave-assisted extraction and liquid phase microextraction based on the solidification of a floating drop was proposed to analyze organochlorine pesticides in grains including rice,maize and millet.Twelve samples can be processed simultaneously in the method.During the extraction process,10%acetonitrile-water solutions containing 110μL of n-hexadecane were used to extract organochlorine pesticides.Subsequently,1.0 g sodium chloride was placed in the extract,and then centrifuged and cooled.The n-hexadecane drops containing the analytes were solidifi ed and transferred for determination by gas chromatography-electron capture detector without any further filtration or cleaning process.Limits of detection for organochlorine pesticides were 0.97–1.01μg/kg and the RSDs were in the range of 2.6%–8.5%.The developed technology has succeeded in analyzing six real grains samples and the recoveries of the organochlorine pesticides were 72.2%–94.3%.Compared with the published extraction methods,the developed method was used to analyze organochlorine pesticides in grains,being more environmentally friendly,which is suitable for the daily determination of organochlorine pesticides.
基金supported by the National Natural Science Foundation of China(11722104,11671150)supported by the National Natural Science Foundation of China(11571280,11331005)+3 种基金supported by the National Natural Science Foundation of China(11331005,11771150)by GDUPS(2016)the Fundamental Research Funds for the Central Universities of China(D2172260)FANEDD No.201315
文摘The two-phase flow models are commonly used in industrial applications, such as nuclear, power, chemical-process, oil-and-gas, cryogenics, bio-medical, micro-technology and so on. This is a survey paper on the study of compressible nonconservative two-fluid model, drift-flux model and viscous liquid-gas two-phase flow model. We give the research developments of these three two-phase flow models, respectively. In the last part, we give some open problems about the above models.
基金Supported by National Natural Science Foundation of China(21978171)。
文摘Based on the assumption of gas-liquid stratified flow pattern in inclined gas wells,considering the influence of wettability and surface tension on the circumferential distribution of liquid film along the wellbore wall,the influence of the change of the gas-liquid interface configuration on the potential energy,kinetic energy and surface free energy of the two-phase system per unit length of the tube is investigated,and a new model for calculating the gas-liquid distribution at critical conditions is developed by using the principle of minimum energy.Considering the influence of the inclination angle,the calculation model of interfacial friction factor is established,and finally closed the governing equations.The interface shape is more vulnerable to wettability and surface tension at a low liquid holdup,resulting in a curved interface configuration.The interface is more curved when the smaller is the pipe diameter,or the smaller the liquid holdup,or the smaller the deviation angle,or the greater gas velocity,or the greater the gas density.The critical liquid-carrying velocity increases nonlinearly and then decreases with the increase of inclination angle.The inclination corresponding to the maximum critical liquid-carrying velocity increases with the increase of the diameter of the wellbore,and it is also affected by the fluid properties of the gas phase and liquid phase.The mean relative errors for critical liquid-carrying velocity and critical pressure gradient are 1.19%and 3.02%,respectively,and the misclassification rate is 2.38%in the field trial,implying the new model can provide a valid judgement on the liquid loading in inclined gas wells.
基金The National Natural Science Foundation of China(51679196,51879216,51339005)
文摘In order to study the influence of gas-liquid two-phase flow on the performance and internal flow field of a centrifugal pump,the steady three-dimensional flow with different gas volume fractions was simulated by applying the Reynolds-average N-S equation and mixture gas-liquid two-phase flow model,and the compressibility of gas was taken into consideration in the simulation. Then the centrifugal pump characteristic and the gas distribution law in different gas volume fractions were analyzed. The computational results show that gas volume fraction has a certain influence on the performance of the centrifugal pump,and the efficiency and head of the pump are on the decline with the increase of it.Static pressure in the impeller increases in the radial direction,but the pressure gradient in the flow direction is different under the different gas volume fractions. The gas volume is distributed mainly in the ipsilateral direction of impeller back shroud in the flow channel of the volute. On the suction side of the blade inlet there is an obvious low-pressure area,which causes bubbles agglutination and higher gas volume fraction. With the gas entering passage flow,gas volume fraction in the suction decreases and the pressure surface rises gradually. Higher gas volume fraction causes air blocking phenomenon in the flow passage and the discharge capacity reduces. The increase of gas volume makes the turbulent motion within the impeller more and more intense,which leads to more and more energy loss.
基金the National Natural Science Foundation (No.59995460)
文摘Flow patterns in upstream and downstream straight tubes of sudden-changed areas in a horizontal straight pipe were experimentally examined. Both sudden-expansion cross-section (SECS) and sudden-contraction cross-section (SCCS) were investigated. The flow pattern maps upstream and downstream were delineated and compared with those in straight tubes with uniform cross-sections. The effects of the SECS and SCCS on flow patterns were discussed and analyzed. Furthermore, flow pattern transition mechanisms resulting in occurrences of different flow patterns were simply discussed and some transition criteria for the flow pattern transitions were deduced by using the non-dimensionlized analysis method.