期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
洪泽湖湿地纹理特征参数分析 被引量:13
1
作者 张楼香 阮仁宗 夏双 《国土资源遥感》 CSCD 北大核心 2015年第1期75-80,共6页
应用纹理特征进行影像分类,关键在于纹理特征参数的确定。以洪泽湖湿地典型地区为研究对象,选择灰度共生矩阵进行纹理特征计算,探讨灰度共生矩阵窗口尺寸、移动步长、方向和纹理特征统计量对淡水湖泊湿地的区分能力;然后,利用纹理特征... 应用纹理特征进行影像分类,关键在于纹理特征参数的确定。以洪泽湖湿地典型地区为研究对象,选择灰度共生矩阵进行纹理特征计算,探讨灰度共生矩阵窗口尺寸、移动步长、方向和纹理特征统计量对淡水湖泊湿地的区分能力;然后,利用纹理特征和地物光谱特征,结合决策树方法对研究区湿地及其他主要地类进行分类,并通过混淆矩阵进行精度评价。结果表明:研究区湿地分类中纹理特征的最佳窗口大小为3像元×3像元,方向为90°,步长为1个像元,纹理特征统计量组合为均值、熵和相关度;分类精度为83.24%,Kappa为0.788,其结果验证了纹理特征参数选择的科学性和合理性。 展开更多
关键词 洪泽湖湿地 纹理特征 窗口尺寸 移动步长和方向 灰度共生矩阵 GRAY level co-occurrence matrix(GLCM)
在线阅读 下载PDF
基于纹理特征的水系信息提取 被引量:6
2
作者 黄春龙 邢立新 韩冬 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2008年第S1期226-228,250,共4页
以往的遥感水系信息提取多是基于图像的波谱信息,而水系的构成形态更多展现了空间的变化,所以反映空间变化情况的纹理信息在水系提取方面更有优势。基于图像纹理特征提取水系的方法研究,通过统计图像的灰度共生矩阵,使用对比度和方差统... 以往的遥感水系信息提取多是基于图像的波谱信息,而水系的构成形态更多展现了空间的变化,所以反映空间变化情况的纹理信息在水系提取方面更有优势。基于图像纹理特征提取水系的方法研究,通过统计图像的灰度共生矩阵,使用对比度和方差统计量对水系信息进行了提取研究,结果证明纹理特征对水系的准确提取非常有效。 展开更多
关键词 纹理特征 水系提取 遥感图像 灰度共生矩阵
在线阅读 下载PDF
Decision tree and deep learning based probabilistic model for character recognition 被引量:6
3
作者 A.K.Sampath Dr.N.Gomathi 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第12期2862-2876,共15页
One of the most important methods that finds usefulness in various applications, such as searching historical manuscripts, forensic search, bank check reading, mail sorting, book and handwritten notes transcription, i... One of the most important methods that finds usefulness in various applications, such as searching historical manuscripts, forensic search, bank check reading, mail sorting, book and handwritten notes transcription, is handwritten character recognition. The common issues in the character recognition are often due to different writing styles, orientation angle, size variation(regarding length and height), etc. This study presents a classification model using a hybrid classifier for the character recognition by combining holoentropy enabled decision tree(HDT) and deep neural network(DNN). In feature extraction, the local gradient features that include histogram oriented gabor feature and grid level feature, and grey level co-occurrence matrix(GLCM) features are extracted. Then, the extracted features are concatenated to encode shape, color, texture, local and statistical information, for the recognition of characters in the image by applying the extracted features to the hybrid classifier. In the experimental analysis, recognition accuracy of 96% is achieved. Thus, it can be suggested that the proposed model intends to provide more accurate character recognition rate compared to that of character recognition techniques used in the literature. 展开更多
关键词 GREY level co-occurrence matrix FEATURE HISTOGRAM oriented GABOR gradient FEATURE hybrid CLASSIFIER holoentropy enabled decision tree CLASSIFIER
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部