期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A novel facial emotion recognition scheme based on graph mining 被引量:1
1
作者 Alia K.Hassan Suhaila N.Mohammed 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第5期1062-1072,共11页
Recent years have seen an explosion in graph data from a variety of scientific,social and technological fields.From these fields,emotion recognition is an interesting research area because it finds many applications i... Recent years have seen an explosion in graph data from a variety of scientific,social and technological fields.From these fields,emotion recognition is an interesting research area because it finds many applications in real life such as in effective social robotics to increase the interactivity of the robot with human,driver safety during driving,pain monitoring during surgery etc.A novel facial emotion recognition based on graph mining has been proposed in this paper to make a paradigm shift in the way of representing the face region,where the face region is represented as a graph of nodes and edges and the gSpan frequent sub-graphs mining algorithm is used to find the frequent sub-structures in the graph database of each emotion.To reduce the number of generated sub-graphs,overlap ratio metric is utilized for this purpose.After encoding the final selected sub-graphs,binary classification is then applied to classify the emotion of the queried input facial image using six levels of classification.Binary cat swarm intelligence is applied within each level of classification to select proper sub-graphs that give the highest accuracy in that level.Different experiments have been conducted using Surrey Audio-Visual Expressed Emotion(SAVEE)database and the final system accuracy was 90.00%.The results show significant accuracy improvements(about 2%)by the proposed system in comparison to current published works in SAVEE database. 展开更多
关键词 Emotion recognition Facial landmarks Graph mining gspan algorithm Binary cat swarm optimization(BCSO) Neural network
在线阅读 下载PDF
基于时序区分子图的阿尔茨海默症辅助诊断方法
2
作者 信俊昌 郭恩铭 张嘉正 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第8期1089-1096,共8页
为解决现有区分子图方法在解决阿尔茨海默症辅助诊断上忽略脑网络动态连接变化的问题,提出一种基于时序区分子图的辅助诊断方法.将功能磁共振成像经过处理后形成二值矩阵并使同一测试者的多张动态脑网络形成时序差异图,之后进行频繁差... 为解决现有区分子图方法在解决阿尔茨海默症辅助诊断上忽略脑网络动态连接变化的问题,提出一种基于时序区分子图的辅助诊断方法.将功能磁共振成像经过处理后形成二值矩阵并使同一测试者的多张动态脑网络形成时序差异图,之后进行频繁差异子图挖掘、频繁差异序列挖掘,进而筛选出保留脑网络时序特性的生物标记物--时序区分子图.获取ADNI公开数据集的一组数据进行实验,通过与现有的早期阿尔茨海默症辅助诊断方法进行大量的实验对比,证明本文方法的辅助诊断准确率在该数据集上提高了12.7%,进而证明所提方法的有效性. 展开更多
关键词 阿尔茨海默症 时序区分子图 动态脑网络 功能磁共振成像 gspan算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部