基于模块化多电平换流器的高压柔性直流输电系统(modular multilevel converter-based high voltage direct current,MMC-HVDC)常采用双极接线方式以提高系统功率输送能力和可靠性。然而目前对于风电场经柔直外送系统的稳定性研究集中...基于模块化多电平换流器的高压柔性直流输电系统(modular multilevel converter-based high voltage direct current,MMC-HVDC)常采用双极接线方式以提高系统功率输送能力和可靠性。然而目前对于风电场经柔直外送系统的稳定性研究集中于单极接线方式,孤岛直驱风电场与采用不同双极协调控制的双极MMC-HVDC互联系统小信号稳定性问题还有待进一步探究。该文首先考虑频率耦合特性、参考系初相位和直流侧耦合特性的影响,分别建立了采用双U/f下垂控制和定U/f-P/Q控制的双极MMC-HVDC系统交流侧等效SISO阻抗模型,并详细分析了金属回线阻抗和双极间功率均分度对交流阻抗特性的影响。接着对比研究了两种协调控制中共有控制环路和特有控制环路对交流侧负电阻特性及互联系统稳定性的影响规律。最后,孤岛直驱风电场经两种双极协调控制下双极MMC-HVDC外送系统Matlab/Simulink时域仿真结果和硬件在环半实物实时仿真实验结果验证了所提出的小信号阻抗模型的精确性和稳定性分析结论的有效性。展开更多
以工作于电感电流连续导电模式(continuous conductionmode, CCM)的单电感双输出(single-inductor dual-output,SIDO)Boost变换器为研究对象,提出恒定谷值电流型(fixed valley current mode,FVCM)变频控制技术。详细分析FVCM变频控制CCM...以工作于电感电流连续导电模式(continuous conductionmode, CCM)的单电感双输出(single-inductor dual-output,SIDO)Boost变换器为研究对象,提出恒定谷值电流型(fixed valley current mode,FVCM)变频控制技术。详细分析FVCM变频控制CCMSIDOBoost变换器的工作原理及工作时序,得到开关频率与主电路参数以及谷值电流参考值的关系式。采用时间平均等效电路建模方法,推导CCM SIDO Boost变换器的控制–输出、控制–电感电流、交叉影响阻抗等传递函数。建立FVCM变频控制CCMSIDO Boost变换器的小信号模型,计算闭环输出阻抗和交叉影响阻抗传递函数,并从负载瞬态性能和交叉影响特性两方面,与传统的共模–差模电压型控制进行对比分析。研究结果表明:与共模–差模电压型控制相比,FVCM变频控制提高了CCMSIDOBoost变换器的瞬态响应速度,抑制了输出支路间的交叉影响。最后,通过仿真和实验验证理论分析的正确性。展开更多
文摘基于模块化多电平换流器的高压柔性直流输电系统(modular multilevel converter-based high voltage direct current,MMC-HVDC)常采用双极接线方式以提高系统功率输送能力和可靠性。然而目前对于风电场经柔直外送系统的稳定性研究集中于单极接线方式,孤岛直驱风电场与采用不同双极协调控制的双极MMC-HVDC互联系统小信号稳定性问题还有待进一步探究。该文首先考虑频率耦合特性、参考系初相位和直流侧耦合特性的影响,分别建立了采用双U/f下垂控制和定U/f-P/Q控制的双极MMC-HVDC系统交流侧等效SISO阻抗模型,并详细分析了金属回线阻抗和双极间功率均分度对交流阻抗特性的影响。接着对比研究了两种协调控制中共有控制环路和特有控制环路对交流侧负电阻特性及互联系统稳定性的影响规律。最后,孤岛直驱风电场经两种双极协调控制下双极MMC-HVDC外送系统Matlab/Simulink时域仿真结果和硬件在环半实物实时仿真实验结果验证了所提出的小信号阻抗模型的精确性和稳定性分析结论的有效性。
文摘以工作于电感电流连续导电模式(continuous conductionmode, CCM)的单电感双输出(single-inductor dual-output,SIDO)Boost变换器为研究对象,提出恒定谷值电流型(fixed valley current mode,FVCM)变频控制技术。详细分析FVCM变频控制CCMSIDOBoost变换器的工作原理及工作时序,得到开关频率与主电路参数以及谷值电流参考值的关系式。采用时间平均等效电路建模方法,推导CCM SIDO Boost变换器的控制–输出、控制–电感电流、交叉影响阻抗等传递函数。建立FVCM变频控制CCMSIDO Boost变换器的小信号模型,计算闭环输出阻抗和交叉影响阻抗传递函数,并从负载瞬态性能和交叉影响特性两方面,与传统的共模–差模电压型控制进行对比分析。研究结果表明:与共模–差模电压型控制相比,FVCM变频控制提高了CCMSIDOBoost变换器的瞬态响应速度,抑制了输出支路间的交叉影响。最后,通过仿真和实验验证理论分析的正确性。