期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A soft-sensing model on hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine
1
作者 黄志雄 何清华 《Journal of Central South University》 SCIE EI CAS 2014年第5期1827-1832,共6页
In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity an... In order to measure the backhoe vibratory excavating resistance of a hydraulic excavator fast and precisely,the influences of vibratory excavating depth,angle,vibratory frequency,amplitude,bucket inserting velocity and soil type on the vibratory excavating resistance were analyzed.Simulation analysis was carded out to establish the bucket inserting velocity,amplitude and vibratory frequency considered as secondary variables and excavating resistance as primary variable.A fttzzy membership function was introduced to improve the anti-noise capacity of support vector machine,which is a soft-sensing model on the hydraulic excavator's backhoe vibratory excavating resistance based on fuzzy support vector machine.The simulation result reveals that its maximum relative training and testing error are nearly 0.68% and-0.47%,respectively.It is concluded that the model has quite high modeling precision and generalization capacity,and it can measure the vibratory excavating resistance accurately,reliably and fast in an indirect way. 展开更多
关键词 fuzzy support vector machine hydraulic excavator backhoe vibration excavating resistance soft-sensing technique
在线阅读 下载PDF
Classification using wavelet packet decomposition and support vector machine for digital modulations 被引量:4
2
作者 Zhao Fucai Hu Yihua Hao Shiqi 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第5期914-918,共5页
To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPT... To make the modulation classification system more suitable for signals in a wide range of signal to noise rate (SNR), a feature extraction method based on signal wavelet packet transform modulus maxima matrix (WPTMMM) and a novel support vector machine fuzzy network (SVMFN) classifier is presented. The WPTMMM feature extraction method has less computational complexity, more stability, and has the preferable advantage of robust with the time parallel moving and white noise. Further, the SVMFN uses a new definition of fuzzy density that incorporates accuracy and uncertainty of the classifiers to improve recognition reliability to classify nine digital modulation types (i.e. 2ASK, 2FSK, 2PSK, 4ASK, 4FSK, 4PSK, 16QAM, MSK, and OQPSK). Computer simulation shows that the proposed scheme has the advantages of high accuracy and reliability (success rates are over 98% when SNR is not lower than 0dB), and it adapts to engineering applications. 展开更多
关键词 modulation classification wavelet packet transform modulus maxima matrix support vector machine fuzzy density.
在线阅读 下载PDF
Improved particle swarm optimization algorithm for fuzzy multi-class SVM 被引量:18
3
作者 Ying Li Bendu Bai Yanning Zhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第3期509-513,共5页
An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from its... An improved particle swarm optimization(PSO) algorithm is proposed to train the fuzzy support vector machine(FSVM) for pattern multi-classification.In the improved algorithm,the particles studies not only from itself and the best one but also from the mean value of some other particles.In addition,adaptive mutation was introduced to reduce the rate of premature convergence.The experimental results on the synthetic aperture radar(SAR) target recognition of moving and stationary target acquisition and recognition(MSTAR) dataset and character recognition of MNIST database show that the improved algorithm is feasible and effective for fuzzy multi-class SVM training. 展开更多
关键词 particle swarm optimization(PSO) fuzzy support vector machine(FSVM) adaptive mutation multi-classification.
在线阅读 下载PDF
Endpoint forecasting on composite regeneration by coupling cerium-based additive and microwave for diesel particulate filter 被引量:6
4
作者 鄂加强 左青松 +2 位作者 刘海力 李煜 龚金科 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2118-2128,共11页
Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter(DPF). Effect o... Numerical simulation has been carried out to investigate the major factors affecting the time of composite regeneration due to coupling cerium-based additive and microwave for diesel particulate f3ilter(DPF). Effect on the composite regeneration time from various factors such as mass flow rate of exhaust gas, temperature of exhaust gas, oxygen concentration of exhaust gas, microwave power and amount of cerium-based additive are investigated. And a mathematical model based on fuzzy least squares support vector machines has been developed to forecast the endpoint of the composite regeneration. The results show that the relative error of endpoint forecasting model of composite regeneration is less than 3.5%, and the oxygen concentration of exhaust gas has the biggest effect on the endpoint of composite regeneration, followed by the mass flow rate of exhaust gas, the microwave power, the temperature of exhaust gas and the amount of cerium-based additive. 展开更多
关键词 fuzzy least squares support vector machines diesel particulate filter composite regeneration endpoint forecasting
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部