The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs ty...The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs typically have some levels of fuzziness. To analyze a decision making unit (DMU) with fuzzy input/output data, previous studies provided the fuzzy DEA model and proposed an associated evaluating approach. Nonetheless, numerous deficiencies must still be improved, including the α- cut approaches, types of fuzzy numbers, and ranking techniques. Moreover, a fuzzy sample DMU still cannot be evaluated for the Fuzzy DEA model. Therefore, this paper proposes a fuzzy DEA model based on sample decision making unit (FSDEA). Five eval- uation approaches and the related algorithm and ranking methods are provided to test the fuzzy sample DMU of the FSDEA model. A numerical experiment is used to demonstrate and compare the results with those obtained using alternative approaches.展开更多
Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clu...Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clusters at the same time.Many scientific communities have used the clustering algorithm from the perspective of density,which is one of the best methods in clustering.This study proposes a density-based spatial clustering of applications with noise(DBSCAN)algorithm based on the selected high-density areas by automatic fuzzy-DBSCAN(AFD)which works with the initialization of two parameters.AFD,by using fuzzy and DBSCAN features,is modeled by the selection of high-density areas and generates two parameters for merging and separating automatically.The two generated parameters provide a state of sub-cluster rules in the Cartesian coordinate system for the dataset.The model overcomes the problems of clustering such as morphology,overlapping,and the number of clusters in a dataset simultaneously.In the experiments,all algorithms are performed on eight data sets with 30 times of running.Three of them are related to overlapping real datasets and the rest are morphologic and synthetic datasets.It is demonstrated that the AFD algorithm outperforms other recently developed clustering algorithms.展开更多
One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the qu...One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the quality of data after this evaluation is satisfactory with the requirement of decision maker. A fuzzy neural network based research method of data quality evaluation is proposed. First, the criteria for the evaluation of data quality are selected to construct the fuzzy sets of evaluating grades, and then by using the learning ability of NN, the objective evaluation of membership is carried out, which can be used for the effective evaluation of data quality. This research has been used in the platform of 'data report of national compulsory education outlay guarantee' from the Chinese Ministry of Education. This method can be used for the effective evaluation of data quality worldwide, and the data quality situation can be found out more completely, objectively, and in better time by using the method.展开更多
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside...The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers.展开更多
基金supported by the National Natural Science Foundation of China (70961005)211 Project for Postgraduate Student Program of Inner Mongolia University+1 种基金National Natural Science Foundation of Inner Mongolia (2010Zd342011MS1002)
文摘The conventional data envelopment analysis (DEA) measures the relative efficiencies of a set of decision making units with exact values of inputs and outputs. In real-world prob- lems, however, inputs and outputs typically have some levels of fuzziness. To analyze a decision making unit (DMU) with fuzzy input/output data, previous studies provided the fuzzy DEA model and proposed an associated evaluating approach. Nonetheless, numerous deficiencies must still be improved, including the α- cut approaches, types of fuzzy numbers, and ranking techniques. Moreover, a fuzzy sample DMU still cannot be evaluated for the Fuzzy DEA model. Therefore, this paper proposes a fuzzy DEA model based on sample decision making unit (FSDEA). Five eval- uation approaches and the related algorithm and ranking methods are provided to test the fuzzy sample DMU of the FSDEA model. A numerical experiment is used to demonstrate and compare the results with those obtained using alternative approaches.
文摘Clustering is one of the unsupervised learning problems.It is a procedure which partitions data objects into groups.Many algorithms could not overcome the problems of morphology,overlapping and the large number of clusters at the same time.Many scientific communities have used the clustering algorithm from the perspective of density,which is one of the best methods in clustering.This study proposes a density-based spatial clustering of applications with noise(DBSCAN)algorithm based on the selected high-density areas by automatic fuzzy-DBSCAN(AFD)which works with the initialization of two parameters.AFD,by using fuzzy and DBSCAN features,is modeled by the selection of high-density areas and generates two parameters for merging and separating automatically.The two generated parameters provide a state of sub-cluster rules in the Cartesian coordinate system for the dataset.The model overcomes the problems of clustering such as morphology,overlapping,and the number of clusters in a dataset simultaneously.In the experiments,all algorithms are performed on eight data sets with 30 times of running.Three of them are related to overlapping real datasets and the rest are morphologic and synthetic datasets.It is demonstrated that the AFD algorithm outperforms other recently developed clustering algorithms.
基金the National Natural Science Foundation of China (60503024 50634010).
文摘One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the quality of data after this evaluation is satisfactory with the requirement of decision maker. A fuzzy neural network based research method of data quality evaluation is proposed. First, the criteria for the evaluation of data quality are selected to construct the fuzzy sets of evaluating grades, and then by using the learning ability of NN, the objective evaluation of membership is carried out, which can be used for the effective evaluation of data quality. This research has been used in the platform of 'data report of national compulsory education outlay guarantee' from the Chinese Ministry of Education. This method can be used for the effective evaluation of data quality worldwide, and the data quality situation can be found out more completely, objectively, and in better time by using the method.
基金supported by proposal No.OSD/BCUD/392/197 Board of Colleges and University Development,Savitribai Phule Pune University,Pune
文摘The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers.
基金Supported by National Basic Research Program of China (973 Program) (2009CB320601), National Natural Science Foundation of China (60774048, 60821063), the Program for Cheung Kong Scholars, and the Research Fund for the Doctoral Program of China Higher Education (20070145015)
文摘这份报纸学习样品数据的问题为有变化时间的延期的不明确的连续时间的模糊大规模系统的可靠 H 夸张控制。第一,模糊夸张模型( FHM )被用来为某些复杂大规模系统建立模型,然后根据 Lyapunov 指导方法和大规模系统的分散的控制理论,线性 matrixine 质量( LMI )基于条件 arederived toguarantee H 性能不仅当所有控制部件正在操作很好时,而且面对一些可能的致动器失败。而且,致动器的精确失败参数没被要求,并且要求仅仅是失败参数的更低、上面的界限。条件依赖于时间延期的上面的界限,并且不依赖于变化时间的延期的衍生物。因此,获得的结果是不太保守的。最后,二个例子被提供说明设计过程和它的有效性。