To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totali...To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.展开更多
Based on rough similarity degree of rough sets and close degree of fuzzy sets, the definitions of rough similarity degree and rough close degree of rough fuzzy sets are given, which can be used to measure the similar ...Based on rough similarity degree of rough sets and close degree of fuzzy sets, the definitions of rough similarity degree and rough close degree of rough fuzzy sets are given, which can be used to measure the similar degree between two rough fuzzy sets. The properties and theorems are listed. Using the two new measures, the method of clustering in the rough fuzzy system can be obtained. After clustering, the new fuzzy sample can be recognized by the principle of maximal similarity degree.展开更多
提出了一种数据分析的新方法———模糊粗糙数据模型(Fuzzy Rough Data Model,FRDM).该方法采用动态自适应模糊聚类技术,将Kowalczyk方法中的粗糙数据模型(Rough Data Model,RDM)对输入数据空间的网格状“硬划分”转化为模糊划分,辨识...提出了一种数据分析的新方法———模糊粗糙数据模型(Fuzzy Rough Data Model,FRDM).该方法采用动态自适应模糊聚类技术,将Kowalczyk方法中的粗糙数据模型(Rough Data Model,RDM)对输入数据空间的网格状“硬划分”转化为模糊划分,辨识输入数据空间中的模糊模式类,并通过定义各模糊模式类与决策类别之间的类型映射关系ftype:Ci→y,以及输入数据对各模式类分类规则的匹配度(Degree of Fulfillment,DoF(x))概念,建立起相应的FRDM模型.不同数据集的实验测试结果表明,与Kowalczyk的RDM方法相比,文中方法具有更好的数据概括能力、更强的噪声数据处理能力和更高的搜索效率.展开更多
提出了在输入-输出积空间中利用监督模糊聚类技术快速建立粗糙数据模型(rough data model,简称RDM)的一种方法.该方法将RDM模型的分类质量性能指标与具有良好特性的Gustafson-Kessel(G-K)聚类算法结合在一起,并通过引入数据对模糊类的...提出了在输入-输出积空间中利用监督模糊聚类技术快速建立粗糙数据模型(rough data model,简称RDM)的一种方法.该方法将RDM模型的分类质量性能指标与具有良好特性的Gustafson-Kessel(G-K)聚类算法结合在一起,并通过引入数据对模糊类的推定隶属度的概念,给出了将模糊聚类模型转化为粗糙数据模型的方法,从而设计出一种通过迭代计算使目标函数最小的两个必要条件方程来获取RDM模型的有效算法,将Kowalczyk方法的多维搜索过程变为以聚类数目为参数的一维搜索,极大地减少了寻优时间.与传统的粗糙集理论和Kowalczyk方法相比,提出的方法具有更好的数据概括能力和噪声数据处理能力.最后,通过不同的数据集实验测试,结果表明了该方法的有效性.展开更多
文摘To investigate the judging problem of optimal dividing matrix among several fuzzy dividing matrices in fuzzy dividing space, correspondingly, which is determined by the various choices of cluster samples in the totality sample space, two algorithms are proposed on the basis of the data analysis method in rough sets theory: information system discrete algorithm (algorithm 1) and samples representatives judging algorithm (algorithm 2). On the principle of the farthest distance, algorithm 1 transforms continuous data into discrete form which could be transacted by rough sets theory. Taking the approximate precision as a criterion, algorithm 2 chooses the sample space with a good representative. Hence, the clustering sample set in inducing and computing optimal dividing matrix can be achieved. Several theorems are proposed to provide strict theoretic foundations for the execution of the algorithm model. An applied example based on the new algorithm model is given, whose result verifies the feasibility of this new algorithm model.
基金the Fujian Provincial Natural Science Foundation of China (Z0510492006J0391)
文摘Based on rough similarity degree of rough sets and close degree of fuzzy sets, the definitions of rough similarity degree and rough close degree of rough fuzzy sets are given, which can be used to measure the similar degree between two rough fuzzy sets. The properties and theorems are listed. Using the two new measures, the method of clustering in the rough fuzzy system can be obtained. After clustering, the new fuzzy sample can be recognized by the principle of maximal similarity degree.
文摘提出了一种数据分析的新方法———模糊粗糙数据模型(Fuzzy Rough Data Model,FRDM).该方法采用动态自适应模糊聚类技术,将Kowalczyk方法中的粗糙数据模型(Rough Data Model,RDM)对输入数据空间的网格状“硬划分”转化为模糊划分,辨识输入数据空间中的模糊模式类,并通过定义各模糊模式类与决策类别之间的类型映射关系ftype:Ci→y,以及输入数据对各模式类分类规则的匹配度(Degree of Fulfillment,DoF(x))概念,建立起相应的FRDM模型.不同数据集的实验测试结果表明,与Kowalczyk的RDM方法相比,文中方法具有更好的数据概括能力、更强的噪声数据处理能力和更高的搜索效率.
文摘提出了在输入-输出积空间中利用监督模糊聚类技术快速建立粗糙数据模型(rough data model,简称RDM)的一种方法.该方法将RDM模型的分类质量性能指标与具有良好特性的Gustafson-Kessel(G-K)聚类算法结合在一起,并通过引入数据对模糊类的推定隶属度的概念,给出了将模糊聚类模型转化为粗糙数据模型的方法,从而设计出一种通过迭代计算使目标函数最小的两个必要条件方程来获取RDM模型的有效算法,将Kowalczyk方法的多维搜索过程变为以聚类数目为参数的一维搜索,极大地减少了寻优时间.与传统的粗糙集理论和Kowalczyk方法相比,提出的方法具有更好的数据概括能力和噪声数据处理能力.最后,通过不同的数据集实验测试,结果表明了该方法的有效性.