期刊文献+
共找到1,809篇文章
< 1 2 91 >
每页显示 20 50 100
Intelligent vehicle lateral controller design based on genetic algorithmand T-S fuzzy-neural network
1
作者 RuanJiuhong FuMengyin LiYibin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第2期382-387,共6页
Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg... Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem. 展开更多
关键词 intelligent vehicle genetic algorithm fuzzy-neural network lateral control robustness.
在线阅读 下载PDF
An intelligent control method based on artificial neural network for numerical flight simulation of the basic finner projectile with pitching maneuver
2
作者 Yiming Liang Guangning Li +3 位作者 Min Xu Junmin Zhao Feng Hao Hongbo Shi 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期663-674,共12页
In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a... In this paper,an intelligent control method applying on numerical virtual flight is proposed.The proposed algorithm is verified and evaluated by combining with the case of the basic finner projectile model and shows a good application prospect.Firstly,a numerical virtual flight simulation model based on overlapping dynamic mesh technology is constructed.In order to verify the accuracy of the dynamic grid technology and the calculation of unsteady flow,a numerical simulation of the basic finner projectile without control is carried out.The simulation results are in good agreement with the experiment data which shows that the algorithm used in this paper can also be used in the design and evaluation of the intelligent controller in the numerical virtual flight simulation.Secondly,combined with the real-time control requirements of aerodynamic,attitude and displacement parameters of the projectile during the flight process,the numerical simulations of the basic finner projectile’s pitch channel are carried out under the traditional PID(Proportional-Integral-Derivative)control strategy and the intelligent PID control strategy respectively.The intelligent PID controller based on BP(Back Propagation)neural network can realize online learning and self-optimization of control parameters according to the acquired real-time flight parameters.Compared with the traditional PID controller,the concerned control variable overshoot,rise time,transition time and steady state error and other performance indicators have been greatly improved,and the higher the learning efficiency or the inertia coefficient,the faster the system,the larger the overshoot,and the smaller the stability error.The intelligent control method applying on numerical virtual flight is capable of solving the complicated unsteady motion and flow with the intelligent PID control strategy and has a strong promotion to engineering application. 展开更多
关键词 Numerical virtual flight Intelligent control BP neural network pid Moving chimera grid
在线阅读 下载PDF
A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems 被引量:2
3
作者 Li Shaoyuan & Xi Yugeng (Shanghai Jiaotong University, 200030, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期61-66,共6页
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu... In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications. 展开更多
关键词 fuzzy logic neural networks Adaptive control Nonlinear dynamic system.
在线阅读 下载PDF
Inverse Control of Cable-driven Parallel Mechanism Using Type-2 Fuzzy Neural Network 被引量:9
4
作者 LI Cheng-Dong YI Jian-Qiang YU Yi ZHAO Dong-Bin 《自动化学报》 EI CSCD 北大核心 2010年第3期459-464,共6页
关键词 机器人 数学模型 最小二乘法 动力学
在线阅读 下载PDF
Intelligent Flow Control Technique of ABR Service in ATM Networks Based on Fuzzy Neural Networks 被引量:7
5
作者 Zhang Liangjie Li Yanda Li Qinghua Wang Pu (Dept of Automation, Tsinghua University, Beijing 100084) 《通信学报》 EI CSCD 北大核心 1997年第3期3-9,共7页
InteligentFlowControlTechniqueofABRServiceinATMNetworksBasedonFuzzyNeuralNetworks①ZhangLiangjieLiYandaLiQing... InteligentFlowControlTechniqueofABRServiceinATMNetworksBasedonFuzzyNeuralNetworks①ZhangLiangjieLiYandaLiQinghuaWangPu(DeptofA... 展开更多
关键词 模糊神经网络 流量控制 异步传输网 反馈 可用位率
在线阅读 下载PDF
Fuzzy Control Based on Neural Networks for Armored Vehicle Electric Drive System 被引量:1
6
作者 马晓军 李华 +1 位作者 张剑 张豫南 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第3期169-172,共4页
关键词 装甲车 电力驱动 模糊控制 神经网络 鲁棒性
在线阅读 下载PDF
基于改进PID和扩张状态观测器的温度控制算法 被引量:1
7
作者 吴敏 刘莎 +1 位作者 翟力欣 田光兆 《现代电子技术》 北大核心 2025年第7期112-118,共7页
针对传统温度控制系统控温时间长、误差大的问题,提出一种基于改进PID和扩张状态观测器的温度控制算法。首先,建立了结合BP神经网络的PID参数自调整温度控制模型,并对BP神经网络的输入层进行改进,将更多的先验信息加入输入向量,用于训... 针对传统温度控制系统控温时间长、误差大的问题,提出一种基于改进PID和扩张状态观测器的温度控制算法。首先,建立了结合BP神经网络的PID参数自调整温度控制模型,并对BP神经网络的输入层进行改进,将更多的先验信息加入输入向量,用于训练BP神经网络,以减少系统的不确定性;其次,通过增加状态观测器来估计系统扰动,针对控制系统的扰动进行补偿,并在仿真实验中验证方法的有效性;最后,根据仿真实验结果显示,与参考文献中提及的算法相比,系统的上升时间减少了19.7%,超调量减少了81.7%,调节时间减少了41.7%,静态误差减少了73.0%。 展开更多
关键词 BP神经网络 pid控制 扩张状态观测器 温度控制 参数自调整 系统扰动
在线阅读 下载PDF
基于BP神经网络的Smith-Fuzzy-PID算法在阀门定位中的应用研究 被引量:2
8
作者 谢涛 周邵萍 +1 位作者 王佳硕 裴梓敬 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第5期770-778,共9页
为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。... 为解决气动调节阀控制过程中出现的超调大、精度低等问题,本文采用BP神经网络整定出较优的PID(Proportional Integral Derivative)控制参数,对Smith预估控制器以及模糊控制器进行设计,实现了基于BP神经网络的Smith-Fuzzy-PID控制方法。搭建了实验平台,通过阶跃响应实验来对控制方法进行验证,验证结果表明,提出的方法调节过程无超调,调节时间仅为1.9 s,定位精度在±0.5%以内,有效提高了系统的稳定性,实现了气动调节阀的快速精准定位。 展开更多
关键词 气动调节阀 Smith预估 模糊控制 BP神经网络 pid控制
在线阅读 下载PDF
联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制
9
作者 周阿连 于子茵 刘刚 《机械设计与制造》 北大核心 2025年第6期69-74,共6页
为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛... 为提高自动驾驶机器人车速控制的精度和系统稳定性,提出一种联合改进鸽群优化RBF神经网络PID的自动驾驶机器人车速控制方法。对基本鸽群优化算法(pigeon-inspired optimization,PIO)进行改进,通过增加局部搜索机制,以提升算法全局收敛精度。设计改进的RBF神经网络,采用改进核FCM聚类算法(improved KFCM,IKFCM)初始化RBF神经网络中心,利用改进的PIO(improved PIO,IPIO)优化RBF神经网络参数配置。最后,利用IPIO和IKFCM优化后的RBF神经网络对PID参数进行自适应调整。与其它车速控制方法相比,所提方法车速控制精度提高了约1.2%,能够精准实现对机器人车速的控制。 展开更多
关键词 机器人 鸽群优化算法 RBF神经网络 pid控制 精度
在线阅读 下载PDF
基于PSO-BP模糊PID的变距取苗机构控制系统设计 被引量:2
10
作者 李润泽 王卫兵 李小军 《农机化研究》 北大核心 2025年第2期9-18,共10页
为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。... 为满足番茄、辣椒等蔬菜作物的移栽需求,基于向下取苗原理设计了一种适用72穴和128穴两种主要番茄钵苗穴盘规格的变距取苗机构,通过建立数学模型获得了取苗机械手参数的目标函数,并利用粒子群和模拟退火混合算法对其结构参数进行优化。同时,为实现变距取苗机构的精确控制,提出了一种基于PSO-BP的模糊PID算法以提高控制精度,介绍了系统的结构与工作原理,并通过选型计算与分析建模建立了控制系统的数学模型。针对传统PID控制器稳定性差、响应速度慢等不足之处,利用PSO-BP模糊PID对控制器的参数进行在线调整,以满足控制过程中对参数的不同需求。仿真结果与试验数据的分析表明:在参数相同条件下,基于PSO-BP模糊PID控制系统系统稳定性更好、响应速度更快,具有良好的鲁棒性,提升取苗成功率的同时降低了基质损伤率,能够满足变距取苗机构高精度快速稳定控制的需求。 展开更多
关键词 变距取苗机构 PSO-BP神经网络 模糊pid算法 控制系统
在线阅读 下载PDF
基于卷积神经网络和模糊PID的掘进机截割控制系统研究 被引量:1
11
作者 李英娜 崔彦平 +2 位作者 安博烁 刘百健 靳建伟 《工矿自动化》 北大核心 2025年第1期61-70,137,共11页
针对悬臂式掘进机在掘进过程中面对煤岩硬度复杂变化时适应性不足、系统稳定性低等问题,提出一种基于卷积神经网络(CNN)及模糊PID的掘进机截割控制系统,该系统包括巷道断面成形特性和智能截割控制策略2个部分,其中掘进机智能截割控制策... 针对悬臂式掘进机在掘进过程中面对煤岩硬度复杂变化时适应性不足、系统稳定性低等问题,提出一种基于卷积神经网络(CNN)及模糊PID的掘进机截割控制系统,该系统包括巷道断面成形特性和智能截割控制策略2个部分,其中掘进机智能截割控制策略由CNN煤岩硬度动态感知模块和截割臂摆速模糊PID控制模块组成。提出一种有效的截割路径,使截割头沿规划路径从上至下进行煤岩截割,以提高断面完整性,减小掘进方向的误差。采用CNN煤岩硬度动态感知模块分析采集的截割电动机电流、截割臂振动加速度、回转油缸压力数据信息,以感知煤岩特性;采用截割臂摆速模糊PID控制模块对感知后的数据进行模糊化与解模糊化处理,输出相应控制参数信号;电液比例阀根据接收到的信号控制液压油的流量和压力,通过阀控液压缸控制截割臂摆速,实现截割臂摆速的自适应控制。现场实验结果表明:当掘进机截割较软介质与煤时,截割臂以高摆速工作;当掘进机截割复杂岩层时,摆速随截割信号的增大而降低,截割信号在0~1之间变动;当掘进机截割较硬岩层时,截割载荷信号接近1,截割臂的摆速降低至0。 展开更多
关键词 悬臂式掘进机 智能截割 截割臂摆速 截割路径 模糊pid控制 煤岩硬度动态感知 卷积神经网络
在线阅读 下载PDF
支气管镜机器人的IWOA-BP神经网络-PID控制
12
作者 陈浩 王亚刚 +3 位作者 白冲 胡珍丽 吴启标 田鑫驰 《控制工程》 北大核心 2025年第7期1207-1216,共10页
在支气管镜机器人控制中,传统比例积分微分(proportional integral differential,PID)控制的精度不足,反向传播(back propagation,BP)神经网络易陷入局部最优。针对此问题,提出了一种改进鲸鱼优化算法(improved whale optimization algo... 在支气管镜机器人控制中,传统比例积分微分(proportional integral differential,PID)控制的精度不足,反向传播(back propagation,BP)神经网络易陷入局部最优。针对此问题,提出了一种改进鲸鱼优化算法(improved whale optimization algorithm,IWOA)优化的BP-PID控制方法。首先,IWOA在传统鲸鱼优化算法的基础上,引入非线性收敛因子动态平衡全局搜索能力和局部搜索精度,通过帐篷(tent)混沌映射优化种群分布,利用莱维(Lévy)飞行策略增强全局寻优,并结合贪婪选择机制维持种群多样性,为BP神经网络提供最优初始连接权重。然后,BP神经网络在输入层融合参考输入、系统输出和跟踪误差,通过反向传播动态调整PID控制参数。仿真结果表明,与PID控制、BP神经网络-PID控制及其改进方法相比,所提方法能够大幅度降低系统的超调量,缩短调节时间,使稳态误差趋近于零。该方法具有较高的控制精度和抗干扰性,可显著减少操作中机械振动和组织摩擦,提高支气管镜手术的安全性。 展开更多
关键词 支气管镜机器人 BP神经网络 主从控制 pid控制 位置跟踪
在线阅读 下载PDF
基于BP神经网络PID自适应控制的激振系统研究 被引量:5
13
作者 肖乾 葛一帆 +3 位作者 符远航 常运清 汪寒俊 宾浩翔 《机床与液压》 北大核心 2025年第1期52-57,共6页
针对跨座式单轨车辆滚动振动试验台激振系统的位置控制精度易受参数变化和外部干扰等因素的影响,提出基于BP神经网络PID自适应的控制策略。建立激振系统数学模型,并推导出其开环传递函数。基于Simulink搭建3-5-3结构的BP神经网络PID自... 针对跨座式单轨车辆滚动振动试验台激振系统的位置控制精度易受参数变化和外部干扰等因素的影响,提出基于BP神经网络PID自适应的控制策略。建立激振系统数学模型,并推导出其开环传递函数。基于Simulink搭建3-5-3结构的BP神经网络PID自适应控制器,并施加阶跃干扰信号以验证系统的抗干扰能力。仿真结果表明:与传统PID和模糊PID控制器相比,BP神经网络PID自适应控制下系统达到稳态所需时间分别快52%和50%,且超调量基本为0;在应对外界干扰时,该控制器能自动调整控制参数,系统以较快速度恢复至稳态,显著增强了系统的抗干扰能力,同时展现出良好的适应性和鲁棒性。 展开更多
关键词 激振系统 BP神经网络 模糊pid 学习速率
在线阅读 下载PDF
孤网模式下水电机组自适应最优PID控制器设计
14
作者 陈金保 任刚 +3 位作者 徐龙 胡文庆 郑阳 肖志怀 《控制理论与应用》 北大核心 2025年第1期22-32,共11页
为确保孤网模式下频率稳定性,水电站通常采用参数较小的固定PID(F-PID)控制,导致调节速度慢,难以实现全工况最优控制.针对这一问题,设计了一种基于改进灰狼优化算法(IGWO)和反向传播神经网络(BPNN)的水轮机调节系统(HTRS)自适应变PID控... 为确保孤网模式下频率稳定性,水电站通常采用参数较小的固定PID(F-PID)控制,导致调节速度慢,难以实现全工况最优控制.针对这一问题,设计了一种基于改进灰狼优化算法(IGWO)和反向传播神经网络(BPNN)的水轮机调节系统(HTRS)自适应变PID控制器(V-PID),以在全工况下获得最优调节效果.首先,搭建高精度的HTRS仿真平台,并按水头和导叶开度变化范围划分工况.然后基于Hopf分岔理论确定各工况下PID参数约束条件及最大值.进一步,采用基于PID参数最大值数据集、综合ITAE指标和非线性收敛因子的IGWO计算出各工况下最优PID参数,并以最优PID参数作为BPNN样本数据,通过训练得到自适应V-PID控制器神经网络模型.最后,以某实际水电站为例,验证了V-PID控制器效果.仿真试验表明:基于V-PID控制器的非线性HTRS模型可根据工况变化在线自动调整PID参数,以结构简单、易实现为前提,实现了孤网模式下水电机组全工况最优控制. 展开更多
关键词 水电机组 改进灰狼优化算法 自适应控制 HOPF分岔 神经网络 pid控制器
在线阅读 下载PDF
Non-Minimum Phase Nonlinear System Predictive Control Based on Local Recurrent Neural Networks 被引量:2
15
作者 张燕 陈增强 袁著祉 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2003年第1期70-73,共4页
After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model erro... After a recursive multi-step-ahead predictor for nonlinear systems based on local recurrent neural networks is introduced, an intelligent FID controller is adopted to correct the errors including identified model errors and accumulated errors produced in the recursive process. Characterized by predictive control, this method can achieve a good control accuracy and has good robustness. A simulation study shows that this control algorithm is very effective. 展开更多
关键词 Multi-step-ahead predictive control Recurrent neural networks Intelligent pid control.
在线阅读 下载PDF
汽车半主动空气悬架控制器BP-PID设计及验证
16
作者 郑世界 徐延海 辛乐 《机械设计与制造》 北大核心 2025年第4期229-232,236,共5页
汽车悬架控制中常规PID控制器的准确性并不理想,与实际应用需求存在一定的偏差。为此提出一种基于BP神经网络的新型PID控制方法,成功应用于汽车半主动空气悬架控制器上。利用神经网络实现悬架PID控制器的在线整定,并进行快速近似和自动... 汽车悬架控制中常规PID控制器的准确性并不理想,与实际应用需求存在一定的偏差。为此提出一种基于BP神经网络的新型PID控制方法,成功应用于汽车半主动空气悬架控制器上。利用神经网络实现悬架PID控制器的在线整定,并进行快速近似和自动学习。在Matlab/Simulink平台开展了路面模拟信号验证分析,研究结果表明:采用LQG控制器无法实现与模拟程序相同的控制效果,而BP-PID悬挂能够使车体加速度减小80%左右,整车平顺性也得到明显改善。相比较LQG系统,BP-PID对车辆的控制能够获得±1500N变化幅度,具有更好鲁棒性和更强非线性响应能力。该研究的BP-PID控制悬架更满足节能环保的控制要求,提高乘坐的舒适效果,具有很高的推广价值。 展开更多
关键词 汽车悬架 神经网络 pid控制器 仿真 随机路面
在线阅读 下载PDF
基于IT2FBLS强化学习PID的MSWI过程炉膛温度控制
17
作者 田昊 汤健 +3 位作者 夏恒 王天峥 余文 乔俊飞 《自动化学报》 北大核心 2025年第7期1626-1641,共16页
城市固废焚烧(MSWI)过程中固有的非线性、时变性和不确定性导致领域专家需要凭借经验通过高频率手动干预进行炉膛温度控制.针对上述问题,为模拟专家的自适应机制,提出基于强化学习的比例-积分-微分(PID)自整定控制策略,即采用共享机制区... 城市固废焚烧(MSWI)过程中固有的非线性、时变性和不确定性导致领域专家需要凭借经验通过高频率手动干预进行炉膛温度控制.针对上述问题,为模拟专家的自适应机制,提出基于强化学习的比例-积分-微分(PID)自整定控制策略,即采用共享机制区间II型模糊宽度学习系统(IT2FBLS)拟合Actor-critic网络(ACN)进行PID参数优化.首先,采用共享机制IT2FBLS拟合ACN以克服焚烧过程的不确定性、减少计算消耗和确保紧凑的网络结构;然后,利用基于时间差分误差的梯度下降法更新ACN参数以实现快速学习;最后,利用李雅普诺夫方法,证明Actor-critic算法的收敛性和控制过程的稳定性.通过MSWI过程的实际运行数据仿真验证了该方法的有效性. 展开更多
关键词 城市固废焚烧 炉膛温度控制 强化学习 区间Ⅱ型模糊宽度学习系统 Actor-critic网络 共享机制 pid参数优化
在线阅读 下载PDF
On-Line Real Time Realization and Application of Adaptive Fuzzy Inference Neural Network
18
作者 Han, Jianguo Guo, Junchao Zhao, Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期67-74,共8页
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and... In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed. 展开更多
关键词 fuzzy control Identification (control systems) Inference engines Learning algorithms Mathematical models Multivariable control systems neural networks Nonlinear control systems Real time systems
在线阅读 下载PDF
负载敏感阀控系统改进RBF模糊PID控制分析
19
作者 齐冠然 李民 卢金生 《机械设计与制造》 北大核心 2025年第5期141-144,共4页
RBF神经网络对于不确定问题的处理具有明显优势,尤其适用于具有节能效果的锻压机负载敏感阀控系统。在介绍RBF神经网络结构的基础上,设计了一种采用改进RBF/模糊PID控制方案。选择经过改进的径向基函数(RBF)神经网络实现对锻压机液压驱... RBF神经网络对于不确定问题的处理具有明显优势,尤其适用于具有节能效果的锻压机负载敏感阀控系统。在介绍RBF神经网络结构的基础上,设计了一种采用改进RBF/模糊PID控制方案。选择经过改进的径向基函数(RBF)神经网络实现对锻压机液压驱动过程的PID控制,同时优化了RBF神经网络的结构。利用Matlab对各个动作下的锻压机输出功率开展了模拟测试,对比了模拟结果和改进前的输出结果。在空载与轻载条件下采用RBF/模糊PID可以获得更高的控制精度,能够实现系统的快速响应,从而降低了液压泵的输出功率,减少系统能耗,获得更优的节能效果。重载下,改进RBF/模糊PID控制效果不明显,期待后续进一步加强控制。该研究对提高液压锻压机动作精度控制和节约能源具有一定的理论指导意义,易于推广应用。 展开更多
关键词 锻压机 改进RBF神经网络 pid控制 节能
在线阅读 下载PDF
基于自适应神经网络补偿的四旋翼PID控制策略
20
作者 杜飞平 熊振宇 +1 位作者 廖飞 李婷 《兵工自动化》 北大核心 2025年第6期62-68,共7页
针对四旋翼飞行器在控制过程中的不确定性和外部扰动,提出一种自适应比例-积分-微分(proportion integration differentiation,PID)的控制策略。在外环位置控制器设计的前馈补偿比例微分(proportion derivative,PD)控制中融入了积分项,... 针对四旋翼飞行器在控制过程中的不确定性和外部扰动,提出一种自适应比例-积分-微分(proportion integration differentiation,PID)的控制策略。在外环位置控制器设计的前馈补偿比例微分(proportion derivative,PD)控制中融入了积分项,通过数学推导与仿真分析以消除系统稳态误差,同时提升跟踪精度。在内环姿态控制器设计中,采用自适应RBF神经网络对PID进行补偿性设计,经反复的算法优化与模型验证,构建出高效的控制器模型。基于所设计的四旋翼飞行器模型,结合所提控制策略进行仿真测试。实验结果表明:该方法能对系统所遭受的外部干扰进行高效自适应补偿,有效提升了系统的稳定性,表现出良好的控制能力。 展开更多
关键词 四旋翼飞行器 内外环控制 自适应pid RBF神经网络
在线阅读 下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部