Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be reg...Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem.展开更多
In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuz...In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.展开更多
In this paper, the structure and function of the IDSS in the operation process of electric furnace for cleaning slag are presented and the fuzzy neural network decision model (FNNDM) in the IDSS is specially suggested...In this paper, the structure and function of the IDSS in the operation process of electric furnace for cleaning slag are presented and the fuzzy neural network decision model (FNNDM) in the IDSS is specially suggested. The IDSS possesses selflearning and adaptive properties, and has been used for managing and analyzing the optimal operational conditions since June 1992. Electric energy consumption has been reduced remarkably and the coefficient of recovery of cobalt and nickel has been increased.展开更多
针对传统比例-积分-微分(proportional integral derivative,PID)控制和模型论控制方法难以应对新型电力系统背景下微电网面临的运行场景复杂多变的问题,提出了基于模糊神经网络的微电网荷储协调智能控制方法。首先确定了微电网模糊控...针对传统比例-积分-微分(proportional integral derivative,PID)控制和模型论控制方法难以应对新型电力系统背景下微电网面临的运行场景复杂多变的问题,提出了基于模糊神经网络的微电网荷储协调智能控制方法。首先确定了微电网模糊控制输入及输出变量,以平抑净负荷波动及减少储能充放电频次为目的,将微电网控制经验总结成模糊规则表,采用神经网络深度学习算法修正模糊控制模型的隶属度函数中心、宽度和输出权重来提高模型的自适应能力,从而制定了可调控负荷和储能的功率控制系数;进而针对模糊神经网络控制输出的负荷调控需求量在各可调控负荷间分配的问题,提出了基于灵活性供给指标排序的负荷调控优先级选择方法,最终完成了微电网系统储能单元和可调控负荷控制策略的制定。某典型微电网系统算例仿真结果表明,所提方法制定的各可调控负荷与储能控制策略能在避免储能频繁和过度充放电的同时,在并网状态下有效减弱并网功率对上级电网造成的随机扰动,在孤岛状态下能够有效平抑系统功率波动,提升系统运行稳定性。展开更多
文摘Non-linearity and parameter time-variety are inherent properties of lateral motions of a vehicle. How to effectively control intelligent vehicle (IV) lateral motions is a challenging task. Controller design can be regarded as a process of searching optimal structure from controller structure space and searching optimal parameters from parameter space. Based on this view, an intelligent vehicle lateral motions controller was designed. The controller structure was constructed by T-S fuzzy-neural network (FNN). Its parameters were searched and selected with genetic algorithm (GA). The simulation results indicate that the controller designed has strong robustness, high precision and good ride quality, and it can effectively resolve IV lateral motion non-linearity and time-variant parameters problem.
文摘In order to study intelligent fault diagnosis methods based on fuzzy neural network (NN) expert system and build up intelligent fault diagnosis for a type of missile weapon system, the concrete implementation of a fuzzy NN fault diagnosis expert system is given in this paper. Based on thorough research of knowledge presentation, the intelligent fault diagnosis system is implemented with artificial intelligence for a large-scale missile weapon equipment. The method is an effective way to perform fuzzy fault diagnosis. Moreover, it provides a new way of the fault diagnosis for large-scale missile weapon equipment.
文摘In this paper, the structure and function of the IDSS in the operation process of electric furnace for cleaning slag are presented and the fuzzy neural network decision model (FNNDM) in the IDSS is specially suggested. The IDSS possesses selflearning and adaptive properties, and has been used for managing and analyzing the optimal operational conditions since June 1992. Electric energy consumption has been reduced remarkably and the coefficient of recovery of cobalt and nickel has been increased.
文摘针对传统比例-积分-微分(proportional integral derivative,PID)控制和模型论控制方法难以应对新型电力系统背景下微电网面临的运行场景复杂多变的问题,提出了基于模糊神经网络的微电网荷储协调智能控制方法。首先确定了微电网模糊控制输入及输出变量,以平抑净负荷波动及减少储能充放电频次为目的,将微电网控制经验总结成模糊规则表,采用神经网络深度学习算法修正模糊控制模型的隶属度函数中心、宽度和输出权重来提高模型的自适应能力,从而制定了可调控负荷和储能的功率控制系数;进而针对模糊神经网络控制输出的负荷调控需求量在各可调控负荷间分配的问题,提出了基于灵活性供给指标排序的负荷调控优先级选择方法,最终完成了微电网系统储能单元和可调控负荷控制策略的制定。某典型微电网系统算例仿真结果表明,所提方法制定的各可调控负荷与储能控制策略能在避免储能频繁和过度充放电的同时,在并网状态下有效减弱并网功率对上级电网造成的随机扰动,在孤岛状态下能够有效平抑系统功率波动,提升系统运行稳定性。