期刊文献+
共找到3,981篇文章
< 1 2 200 >
每页显示 20 50 100
基于FNN优化的AUV姿态控制研究
1
作者 张海龙 齐向东 +1 位作者 普勇博 张涛 《舰船科学技术》 北大核心 2025年第5期132-137,共6页
为了满足自主水下潜航器(AUV)快速达到稳定姿态的需求,在传统增量式PID的基础上引入神经网络理论和模糊控制逻辑,提出一种模糊神经网络(FNN)PID姿态控制器。首先建立双坐标系系统,并通过受力分析得到AUV动力学模型,其次融合模糊逻辑和... 为了满足自主水下潜航器(AUV)快速达到稳定姿态的需求,在传统增量式PID的基础上引入神经网络理论和模糊控制逻辑,提出一种模糊神经网络(FNN)PID姿态控制器。首先建立双坐标系系统,并通过受力分析得到AUV动力学模型,其次融合模糊逻辑和人工神经网络的计算模型,设计AUV姿态控制器并搭建Matlab仿真模型,有效解决模糊PID控制过度依赖经验,难以应对水下复杂工况的问题。仿真结果表明,相比于传统的模糊PID控制和BP神经网络,模糊神经网络PID姿态控制器具有更快的响应速度,达到稳定姿态所需时间减少一倍以上,有效改善了AUV姿态控制性能。 展开更多
关键词 自主水下潜航器 模糊PID BP神经网络 控制优化
在线阅读 下载PDF
Self-organizing fuzzy clustering neural network and application to electronic countermeasures effectiveness evaluation 被引量:6
2
作者 Li Zhisheng Li Junshan +1 位作者 Feng Fan Zhao Xin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期119-124,共6页
A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of elect... A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of electronic countermeasures, which not only exerts the advantages of the fuzzy theory, but also has a good ability in machine learning and data analysis. The subjective value of sample versus class is computed by the fuzzy computing theory, and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer. Meanwhile, the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples. The simulation result indicates that the proposed algorithm is feasible and effective. 展开更多
关键词 fuzzy clusteringself-organizing neural network effectiveness evaluation
在线阅读 下载PDF
Fuzzy Entropy Based Combined Learning Algorithm for Neural Networks 被引量:3
3
作者 Min Yao (Dept. of Computer Science, Hangzhou University, Hangzhou 310028,P. R. China ) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 1996年第1期15-22,共8页
Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the le... Learning is one of key problems of artificial neural networks. In this paper, we present a kind of combined learning algorithm based on fuzzy entropy criterion for neural networks. The basic idea is to simulate the learning mechanism of human brain and overcome the limitations of monocrifsterion learning. The comparison is made between the given learning algorithm and the typical BP algorithm in order to show the characteristics of the new algorithm. 展开更多
关键词 Artificial neural networks Combined learning fuzzy entropy criterion.
在线阅读 下载PDF
Uncertain information fusion with robust adaptive neural networks-fuzzy reasoning 被引量:2
4
作者 Zhang Yinan Sun Qingwei +2 位作者 Quan He Jin Yonggao Quan Taifan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第3期495-501,共7页
In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as ... In practical multi-sensor information fusion systems, there exists uncertainty about the network structure, active state of sensors, and information itself (including fuzziness, randomness, incompleteness as well as roughness, etc). Hence it requires investigating the problem of uncertain information fusion. Robust learning algorithm which adapts to complex environment and the fuzzy inference algorithm which disposes fuzzy information are explored to solve the problem. Based on the fusion technology of neural networks and fuzzy inference algorithm, a multi-sensor uncertain information fusion system is modeled. Also RANFIS learning algorithm and fusing weight synthesized inference algorithm are developed from the ANFIS algorithm according to the concept of robust neural networks. This fusion system mainly consists of RANFIS confidence estimator, fusing weight synthesized inference knowledge base and weighted fusion section. The simulation result demonstrates that the proposed fusion model and algorithm have the capability of uncertain information fusion, thus is obviously advantageous compared with the conventional Kalman weighted fusion algorithm. 展开更多
关键词 uncertain information information fusion neural networks fuzzy inference robust estimate.
在线阅读 下载PDF
A Fuzzy-Neural Network Control of Nonlinear Dynamic Systems 被引量:2
5
作者 Li Shaoyuan & Xi Yugeng (Shanghai Jiaotong University, 200030, P. R. China) 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期61-66,共6页
In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neu... In this paper, an adaptive dynamic control scheme based on a fuzzy neural network is presented, that presents utilizes both feed-forward and feedback controller elements. The former of the two elements comprises a neural network with both identification and control role, and the latter is a fuzzy neural algorithm, which is introduced to provide additional control enhancement. The feedforward controller provides only coarse control, whereas the feedback controller can generate on-line conditional proposition rule automatically to improve the overall control action. These properties make the design very versatile and applicable to a range of industrial applications. 展开更多
关键词 fuzzy logic neural networks Adaptive control Nonlinear dynamic system.
在线阅读 下载PDF
Tracking maneuvering target based on neural fuzzy network with incremental neural leaning 被引量:1
6
作者 Liu Mei Quan Taifan Yao Tianbin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第2期343-349,共7页
The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the m... The scheme for tracking maneuvering target based on neural fuzzy network with incremental neural learning is proposed. When tracked target maneuver occurs, the scheme can detect maneuver immediately and estimate the maneuver value accurately , then the tracking filter can be compensated correctly and duly by the estimated maneuver value. When environment changes, neural fuzzy network with incremental neural learning (INL-SONFIN) can find its optimal structure and parameters automatically to adopt to changed environment. So, it always produce estimated output very close to the true maneuver value that leads to good tracking performance and avoids misstracking. Simulation results show that the performance is superior to the traditional schemes and the scheme can fit changed dynamic environment to track maneuvering target accurately and duly. 展开更多
关键词 neural fuzzy network incremental neural learning maneuvering target tracking.
在线阅读 下载PDF
基于区间Ⅱ型FNN的MSWI过程炉膛温度控制 被引量:2
7
作者 汤健 田昊 +1 位作者 夏恒 乔俊飞 《北京工业大学学报》 北大核心 2025年第2期157-172,共16页
针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析... 针对城市固废焚烧(municipal solid waste incineration,MSWI)过程的炉膛温度难以实现有效控制的问题,提出基于区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network,IT2FNN)的炉膛温度控制方法。首先,进行炉膛温度控制特性分析以确定对其产生影响的关键操作变量;然后,根据上述操作变量基于线性回归决策树(linear regression decision tree,LRDT)建立多入单出(multiple-input single-output,MISO)炉膛温度模型;最后,构建具有自适应参数学习的IT2FNN控制器,并证明其稳定性。在MSWI过程数据集上构建模型并进行控制,实验结果验证了所提方法的有效性。 展开更多
关键词 城市固废焚烧(municipal solid waste incineration MSWI) 炉膛温度控制 线性回归决策树(linear regression decision tree LRDT) 区间Ⅱ型模糊神经网络(interval type-Ⅱfuzzy neural network IT2fnn) 梯度下降法 李雅普诺夫稳定性分析
在线阅读 下载PDF
基于自适应VMD和优化DFNN的剩余电流识别
8
作者 张祥珂 王雅静 +2 位作者 窦震海 白云鹏 王玮 《电测与仪表》 北大核心 2025年第3期190-197,共8页
为实现剩余电流装置(residual current device,RCD)快速故障识别,提高用电安全性,提出一种基于自适应变分模态分解(adaptive variational modal decomposition,AVMD)和优化动态模糊神经网络(dynamic fuzzy neu-ral network,DFNN)的故障... 为实现剩余电流装置(residual current device,RCD)快速故障识别,提高用电安全性,提出一种基于自适应变分模态分解(adaptive variational modal decomposition,AVMD)和优化动态模糊神经网络(dynamic fuzzy neu-ral network,DFNN)的故障剩余电流识别方法(AVMD-DFNN)。通过经验模态分解法自适应确定VMD的分解参数,实现剩余电流信号的降噪。提取剩余电流信号的特征参数,经降维处理后作为DFNN识别剩余电流的分类指标。通过最小输出法优化DFNN,去除冗余模糊规则函数,从而实现RCD快速故障识别。仿真结果表明,AVMD-DFNN具有较高的识别准确率和速度,为研制新型自适应剩余电流装置提供了理论参考。 展开更多
关键词 剩余电流 动态模糊神经网络 变分模态分解 故障识别
在线阅读 下载PDF
Inverse Control of Cable-driven Parallel Mechanism Using Type-2 Fuzzy Neural Network 被引量:9
9
作者 LI Cheng-Dong YI Jian-Qiang YU Yi ZHAO Dong-Bin 《自动化学报》 EI CSCD 北大核心 2010年第3期459-464,共6页
关键词 机器人 数学模型 最小二乘法 动力学
在线阅读 下载PDF
Intelligent Flow Control Technique of ABR Service in ATM Networks Based on Fuzzy Neural Networks 被引量:7
10
作者 Zhang Liangjie Li Yanda Li Qinghua Wang Pu (Dept of Automation, Tsinghua University, Beijing 100084) 《通信学报》 EI CSCD 北大核心 1997年第3期3-9,共7页
InteligentFlowControlTechniqueofABRServiceinATMNetworksBasedonFuzzyNeuralNetworks①ZhangLiangjieLiYandaLiQing... InteligentFlowControlTechniqueofABRServiceinATMNetworksBasedonFuzzyNeuralNetworks①ZhangLiangjieLiYandaLiQinghuaWangPu(DeptofA... 展开更多
关键词 模糊神经网络 流量控制 异步传输网 反馈 可用位率
在线阅读 下载PDF
A New Type of Fuzzy Membership Function Designed for Interval Type-2 Fuzzy Neural Network 被引量:3
11
作者 Jiajun Wang 《自动化学报》 EI CSCD 北大核心 2017年第8期1425-1433,共9页
关键词 模糊隶属函数 模糊神经网络 区间 设计 识别性能 非线性系统 不确定性 调整参数
在线阅读 下载PDF
基于FNN的车用永磁同步电机转动惯量识别与摩擦补偿控制
12
作者 刘晏 李刚 +1 位作者 俞兆起 程浩宁 《重庆理工大学学报(自然科学)》 北大核心 2025年第2期47-54,共8页
考虑到伺服系统在不确定性摩擦影响下难以达到期望的控制效果,摩擦现象给电机参数辨识带来不确定性影响的情况,针对转速规划的伺服系统,设计了一种摩擦和转动惯量的辨识方法。采用T-S型模糊神经网络对摩擦和转动惯量进行在线辨识。将辨... 考虑到伺服系统在不确定性摩擦影响下难以达到期望的控制效果,摩擦现象给电机参数辨识带来不确定性影响的情况,针对转速规划的伺服系统,设计了一种摩擦和转动惯量的辨识方法。采用T-S型模糊神经网络对摩擦和转动惯量进行在线辨识。将辨识得到的基于T-S型模糊神经网络的摩擦模型作为补偿控制、转动惯量用来自整定PI控制器的参数。仿真实验结果显示,设计的在线辨识方法具有良好的逼近性能,获得了满意的轨迹追踪效果。 展开更多
关键词 伺服系统 参数辨识 模糊神经网络 自适应控制
在线阅读 下载PDF
Fuzzy Control Based on Neural Networks for Armored Vehicle Electric Drive System 被引量:1
13
作者 马晓军 李华 +1 位作者 张剑 张豫南 《Defence Technology(防务技术)》 SCIE EI CAS 2006年第3期169-172,共4页
关键词 装甲车 电力驱动 模糊控制 神经网络 鲁棒性
在线阅读 下载PDF
Registration algorithm for sensor alignment based on stochastic fuzzy neural network
14
作者 LiJiao JingZhongliang +1 位作者 HeJiaona WangAn 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期134-139,共6页
Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors... Multiple sensor registration is an important link in multi-sensors data fusion. The existed algorithm is all based on the assumption that system errors come from a fixed deviation set. But there are many other factors, which can result system errors. So traditional registration algorithms have limitation. This paper presents a registration algorithm for sensor alignment based on stochastic fuzzy neural network (SNFF), and utilized fuzzy clustering algorithm obtaining the number of fuzzy rules. Finally, the simulative result illuminate that this way could gain a satisfing result. 展开更多
关键词 multi-sensors REGISTRATION fuzzy clustering stochastic fuzzy neural network.
在线阅读 下载PDF
Decision feedback equalizer based on non-singleton fuzzy regular neural networks
15
作者 Song Heng Wang Chen +2 位作者 He Yin Ma Shiping Zuo Jizhang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2006年第4期896-900,共5页
A new equalization method is proposed in this paper for severely nonlinear distorted channels. The structure of decision feedback is adopted for the non-singleton fuzzy regular neural network that is trained by gradie... A new equalization method is proposed in this paper for severely nonlinear distorted channels. The structure of decision feedback is adopted for the non-singleton fuzzy regular neural network that is trained by gradient-descent algorithm. The model shows a much better performance on anti-jamming and nonlinear classification, and simulation is carried out to compare this method with other nonlinear channel equalization methods. The results show the method has the least bit error rate (BER). 展开更多
关键词 non-singleton fuzzy system neural network EQUALIZER decision feedback.
在线阅读 下载PDF
Fuzzy neural network image filter based on GA
16
作者 刘涵 刘丁 李琦 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2004年第3期426-430,共5页
A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the fo... A new nonlinear image filter using fuzzy neural network based on genetic algorithm is proposed. The learning of network parameters is performed by genetic algorithm with the efficient binary encoding scheme. In the following, fuzzy reasoning embedded in the network aims at restoring noisy pixels without degrading the quality of fine details. It is shown by experiments that the filter is very effective in removing impulse noise and significantly outperforms conventional filters. 展开更多
关键词 genetic algorithm fuzzy neural network image filter impulse noise.
在线阅读 下载PDF
The Fuzzy Modeling Algorithm for Complex Systems Based on Stochastic Neural Network
17
作者 李波 张世英 李银惠 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第3期46-51,共6页
A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Suge... A fuzzy modeling method for complex systems is studied. The notation of general stochastic neural network (GSNN) is presented and a new modeling method is given based on the combination of the modified Takagi and Sugeno's (MTS) fuzzy model and one-order GSNN. Using expectation-maximization(EM) algorithm, parameter estimation and model selection procedures are given. It avoids the shortcomings brought by other methods such as BP algorithm, when the number of parameters is large, BP algorithm is still difficult to apply directly without fine tuning and subjective tinkering. Finally, the simulated example demonstrates the effectiveness. 展开更多
关键词 Complex system modeling General stochastic neural network MTS fuzzy model Expectation-maximization algorithm
在线阅读 下载PDF
On-Line Real Time Realization and Application of Adaptive Fuzzy Inference Neural Network
18
作者 Han, Jianguo Guo, Junchao Zhao, Qian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2000年第1期67-74,共8页
In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and... In this paper, a modeling algorithm developed by transferring the adaptive fuzzy inference neural network into an on-line real time algorithm, combining the algorithm with conventional system identification method and applying them to separate identification of nonlinear multi-variable systems is introduced and discussed. 展开更多
关键词 fuzzy control Identification (control systems) Inference engines Learning algorithms Mathematical models Multivariable control systems neural networks Nonlinear control systems Real time systems
在线阅读 下载PDF
Robust fuzzy control of Takagi-Sugeno fuzzy neural networks with discontinuous activation functions and time delays
19
作者 Yaonan Wang Xiru Wu Yi Zuo 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第3期473-481,共9页
The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theor... The problem of global robust asymptotical stability for a class of Takagi-Sugeno fuzzy neural networks(TSFNN) with discontinuous activation functions and time delays is investigated by using Lyapunov stability theory.Based on linear matrix inequalities(LMIs),we originally propose robust fuzzy control to guarantee the global robust asymptotical stability of TSFNNs.Compared with the existing literature,this paper removes the assumptions on the neuron activations such as Lipschitz conditions,bounded,monotonic increasing property or the right-limit value is bigger than the left one at the discontinuous point.Thus,the results are more general and wider.Finally,two numerical examples are given to show the effectiveness of the proposed stability results. 展开更多
关键词 delayed neural network global robust asymptotical stability discontinuous neuron activation linear matrix inequality(LMI) Takagi-sugeno(T-S) fuzzy model.
在线阅读 下载PDF
Study of Synthesis Identification in Cutting Process with Fuzzy Neural Network
20
作者 LIN Bin, YU Si-yuan, ZHU Hong-tao, ZHU Meng-zhou, LIN Meng-xia (The State Education Ministry Key Laboratory of High Temperature Structure Ceramics and Machining Technology of Engineering Ceramics, Tianjin University, Tianjin 300072, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期40-41,共2页
With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the ... With the development of industrial production modernization, FMS and CIMS will become more and more popularized. For its control system is increasingly modeled, intellectualized and automatized, in order to raise the reliability and stability in the manufacturing process, the comprehensive monitoring and diagnosis aimed at cutting tool wear and chatter become more and more important and get rapid development. The paper tried to discuss of the intellectual status identification method based on acoustics-vibra characteristics of machining process, and propose that the working conditions may be taken as a core, complex fuzzy inference neural network model based on artificial neural network theory, and by using various kinds of modernized signal processing method to abstract enough characteristics parameters which will reflect overall processing status from machining acoustics-vibra signal as information source, to identify different working condition, and provide guarantee for automation and intelligence in machining process. The complex network is composed of NNw and NNs, Each of them is composed of BP model network, NNw is weight network at rule condition, NNs is decision-making network of each status. Y out is final inference result which is to take subordinate degree as weight from NNw, to weight reflecting result from NNs and obtain status inference of monitoring system. In the process of machining, the acoustics-vibor signal were gotten by the acoustimeter and the acceleration piezoelectricity detector, the date is analysed by the signal processing software in time and frequency domain, then form multi feature parameter vector of criterion pattern samples for the different stage of cutting chatter and acoustics-vibra multi feature parameter vector. The vector can give a accurate and comprehensive description for the cutting process, and have the characteristic which are speediness of time domain and veracity of frequency domain. The research works have been practically applied in identification of tool wear, cutting chatter, experiment results showed that it is practicable to identify the cutting chatter based on fuzzy neural network, and the new method based on fuzzy neural network can be applied to other state identification in machining process. 展开更多
关键词 artificial neural network synthesis identification fuzzy inference on-line monitoring acoustics-vibra signal
在线阅读 下载PDF
上一页 1 2 200 下一页 到第
使用帮助 返回顶部