To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so th...To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so that it can predigest the process of disigns and realize the methods without influencing the idiocratic control,which are on the base of the domain flexing.展开更多
Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in indu...Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in industrial application.By adopting novel piecewise fuzzy sets and center-average type-reduction,a simplified adaptive interval Type-2 fuzzy controller involving less computation is developed for practical industrial application.In the proposed controller,the inputs are divided into several subintervals and then two piecewise fuzzy sets are used for each subinterval.With the manner of piecewise fuzzy sets and a novel fuzzy rules inference engine,only part of fuzzy rules are simultaneously activated in one control loop,which exponentially decreases the computation and makes the controller appropriate in industrial application.The simulation and experimental study,involving the popular magnetic levitation platform,shows the predicted system with theoretical stability and good tracking performance.The analysis indicates that there is far less computation of the proposed controller than the traditional adaptive interval Type-2 fuzzy controller,especially when the number of fuzzy rules and fuzzy sets is large,and the controller still maintains good control performance as the traditional one.展开更多
The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers...The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.展开更多
A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle o...A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle of sliding mode control and the property of Nussbaum function.The approach does not require a priori knowledge of the signs of the control gains and the upper bounds and lower bounds of dead-zone parameters to be known a priori.By introducing the integral-type Lyapunov function and adopting the adaptive compensation term of the upper bound of the optimal approximation error and the dead-zone disturbance,the closed-loop control system is proved to be semi-globally stable in the sense that all signals involved are bounded,with tracking errors converging to zero.展开更多
For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chippin...For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic展开更多
A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a math...A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.展开更多
A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems...A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems are employed to approximate the unknown parts of the desired virtual controls,and the approximation errors of fuzzy systems are only required to be norm-bounded.The function tanh(·) is introduced to avoid problems associated with sgn(·).The tracking error is guaranteed to be uniformly ultimately bounded with the aid of an additional adaptive compensation term.Chua's circuit system and R o¨ssler system are presented to illustrate the feasibility and effectiveness of the proposed control technique.展开更多
The problem of decentralized adaptive fuzzy control for a class of time-delayed interconnected nonlinear systems with unknown backlash-like hystersis is discussed. On the basis of the principle of variable structure c...The problem of decentralized adaptive fuzzy control for a class of time-delayed interconnected nonlinear systems with unknown backlash-like hystersis is discussed. On the basis of the principle of variable structure control (VSC) and by using the fuzzy systems with linear adjustable parameters that are used to approximate plant unknown functions, a novel decentralized adaptive fuzzy control strategy with a supervisory controller is developed. A general method, which is modeled the backlash-like hysteresis, is proposed and removes the assumption that the boundedness of disturbance, and the slope of the backlash-like hystersis are known constants. Furthermore, the interconnection term is supposed to be pth-order polynomial in time-delayed states. In addition, the plant dynamic uncertainty and modeling errors are adaptively compensated by adjusting the parameters and gains on-line for each subsystems. By theoretical analysis, it is shown that the closed-loop fuzzy control systems are globally stable, with tracking error converging to zero. Simulation results demonstrate the effectiveness of the approach.展开更多
One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the qu...One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the quality of data after this evaluation is satisfactory with the requirement of decision maker. A fuzzy neural network based research method of data quality evaluation is proposed. First, the criteria for the evaluation of data quality are selected to construct the fuzzy sets of evaluating grades, and then by using the learning ability of NN, the objective evaluation of membership is carried out, which can be used for the effective evaluation of data quality. This research has been used in the platform of 'data report of national compulsory education outlay guarantee' from the Chinese Ministry of Education. This method can be used for the effective evaluation of data quality worldwide, and the data quality situation can be found out more completely, objectively, and in better time by using the method.展开更多
This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key...This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key parameters of the adaptive control algorithm. Simulation results show that this control scheme has satisfactory performance in MIMO systems, chaotic systems and delay systems.展开更多
An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membe...An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.展开更多
Afuzzy controller based oni mproved Generalized-Membership-Function(GMF) algorithmfor afuel cell generationsys-tem wasintroduced.Under the demands on control in application of the converter,a Field Programmable Gate A...Afuzzy controller based oni mproved Generalized-Membership-Function(GMF) algorithmfor afuel cell generationsys-tem wasintroduced.Under the demands on control in application of the converter,a Field Programmable Gate Array(FPGA) re-alization method to manage the power flow was given.This control systembased onthe proposed modified GMF was proved to bea universal approxi mation systemin theory.The fuzzy control technique was combined with Eletronic Design Automatic(EDA)technique and a paralleling fuzzy controller was i mplemented in FPGA.Paralleling fuzzy controller based oni mproved GMF algo-rithm wasi mplemented on a Cyclone FPGA.The result of si mulation based on QuartusII confirmed the validity of the proposed method.展开更多
A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dyn...A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dynamics,the strictly positive-real condition is guaranteed to hold such that the proposed output feedback and adaptation mechanisms are practicable in practice owing to the fact that its implementation does not require the observation error vector itself any more,which corrects the impracticable schemes in the previous literature involved.The presented control algorithm can ensure that all the signals of the closed-loop large-scale system keep uniformly ultimately bounded and that the tracking error converges to zero asymptotically.The decentralized output feedback fuzzy controller can be applied to address the longitudinal control problem of a string of vehicles within an automated highway system(AHS) and the effectiveness of the design procedure is supported by simulation results.展开更多
Automation of skill fuzzy control system is an important research aspect of fuzzy control fields. It's significant for those control instances consisted in production and people's daily life. But, how to control a s...Automation of skill fuzzy control system is an important research aspect of fuzzy control fields. It's significant for those control instances consisted in production and people's daily life. But, how to control a system not movement or behavior rules but only relied on movement parameters, that problem still had not be resolved. This paper proposes a new method used a genetic algorithm based on immune mechanism to learn the degree of membership, at same time, simplifying the corresponding movement equation; its efficiency will be indicated by an example.展开更多
In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy con...In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy contro-(ller,) and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response.展开更多
A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is perform...A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is performed in the frequency domain, and hence the condition is of great significance when the frequency-response method, which is widely used in the linear control theory and practice, is employed to synthesize the simplest T-S fuzzy controller. Besides, this sufficient condition is featured by a graphical interpretation, which makes the condition straightforward to be used. Comparisons are drawn between the performance of the simplest T-S fuzzy controller and that of the linear compensator. Two numerical examples are presented to demonstrate how this sufficient condition can be applied to both stable and unstable plants.展开更多
The subjection function of the fuzzy quantity is bell like,which is on the base of the theory;but during the course of the control,each fuzzy grade should be predigested into a triangle of W=4.
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe...The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.展开更多
A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant no...A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.展开更多
A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, th...A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, the adaptive laws with guaranteed system stability and convergence were developed. The controller updates its parameters online using the laws to control a system and tracks its output command trajectory. The simulation study involving the popular inverted pendulum control problem shows theoretically predicted system stability and good tracking performance. And the comparison simulation experiments subjected to white noige or step disturbance indicate that the T2 controller is better than the T1 controller by 0--18%, depending on the experiment condition and performance measure.展开更多
文摘To improve the ability and precisions of the fuzzy control,this thesis points out the adjusted fuzzy control method,realizes the precision of the fuzzy quantity, and reduces the number of the fuzzy control rules,so that it can predigest the process of disigns and realize the methods without influencing the idiocratic control,which are on the base of the domain flexing.
基金Project(51005253) supported by the National Natural Science Foundation of ChinaProject(2012ZX02702006-003) supported by the National Science and Technology Major Program of ChinaProject(JMTZ201101) supported by the Key Laboratory for Precision & Non-traditional Machining of Ministry of Education,Dalian University of Technology,China
文摘Adaptive Type-2 fuzzy control possesses control performance better than the traditional adaptive fuzzy control.However,heavy computation burden obviously blocks the utilization of adaptive Type-2 fuzzy control in industrial application.By adopting novel piecewise fuzzy sets and center-average type-reduction,a simplified adaptive interval Type-2 fuzzy controller involving less computation is developed for practical industrial application.In the proposed controller,the inputs are divided into several subintervals and then two piecewise fuzzy sets are used for each subinterval.With the manner of piecewise fuzzy sets and a novel fuzzy rules inference engine,only part of fuzzy rules are simultaneously activated in one control loop,which exponentially decreases the computation and makes the controller appropriate in industrial application.The simulation and experimental study,involving the popular magnetic levitation platform,shows the predicted system with theoretical stability and good tracking performance.The analysis indicates that there is far less computation of the proposed controller than the traditional adaptive interval Type-2 fuzzy controller,especially when the number of fuzzy rules and fuzzy sets is large,and the controller still maintains good control performance as the traditional one.
基金This project was supported by the fundation of the Academy of Finland (201353)
文摘The analytical structures and the corresponding mathematical properties of the one dimensional and two dimensional fuzzy controllers are first investigated in detail. The nature of these two kinds of fuzzy controllers is next probed from the perspective of control engineering. For the one dimensional fuzzy controller, it is concluded that this controller is a combination of a saturation element and a nonlinear proportional controller, and the system that employs the one dimensional fuzzy controller is the combination of an open-loop control system and a closedloop control system. For the latter case, it is concluded that it is a hybrid controller, which comprises the saturation part, zero-output part, nonlinear derivative part, nonlinear proportional part, as well as nonlinear proportional-derivative part, and the two dimensional fuzzy controller-based control system is a loop-varying system with varying number of control loops.
基金Supported by National Natural Science Foundation of P.R.China(60074013),the Foundation of the Education Bureau of JiangsuProvince(KK0310067&05KJB520152),and the Foundation of Infor-mation Science Subject Group of Yangzhou University(ISG 030606).
文摘A design scheme of adaptive fuzzy controller for a class of uncertain MIMO nonlinear systems with unknown dead-zones and a triangular control structure is proposed in this pa-per.The design is based on the principle of sliding mode control and the property of Nussbaum function.The approach does not require a priori knowledge of the signs of the control gains and the upper bounds and lower bounds of dead-zone parameters to be known a priori.By introducing the integral-type Lyapunov function and adopting the adaptive compensation term of the upper bound of the optimal approximation error and the dead-zone disturbance,the closed-loop control system is proved to be semi-globally stable in the sense that all signals involved are bounded,with tracking errors converging to zero.
文摘For electro-discharge machining, only in the optimum state could the highest material removal rate be realized. In practical machining process, the timely elevation of the tool electrode is needed to eliminate chipping, which ordinarily occupies quite a lot of time. Therefore, besides the control of the machining parameters, the control of the optimum discharge gap and the conversion of different machining states is also needed. In this paper, the adaptive fuzzy control system of servomechanism for EDM combined with ultrasonic vibration is studied, the servomechanism of which is composed of the stepping motor comprising variable steps and the inductive synchronizer. The fuzzy control technology is used to realize the control of the frequency and the step of the servomechanism. The adaptive fuzzy controller has three inputs and two outputs, which can well meet the actual control requirements. The constitution of the fuzzy control regulation for the step frequency is the key to the design of the whole fuzzy control system of the servomechanism. The step frequency is mainly determined by the position error and the change rate of the position error. When the value of the position error is high or medium, the controlled parameters are selected to eliminate the error; when the position error is lower, the controlled parameters are selected to avoid the over-orientation and thus keep the stability of the system. According to these, a fuzzy control table is established in advanced, which is used to express the relations between the fuzzy input parameters and the fuzzy output parameters. The input parameters and the output parameters are all expressed by the level-values in fuzzy field. Therefore, the output parameters used for control can be obtained for the fuzzy control table according to the detected actual input parameters, by which the EDM combined with ultrasonic vibration is improved and the machining efficiency is increased. In addition, a stimulation program is designed by means of Microsoft Visual Basic
文摘A quarter-automobile active suspension model was proposed. High speed on/off solenoid valves were used as control valves and fuzzy control was chosen as control method . Based on force analyses of system parts, a mathematical model of the active suspension system was established and simplified by linearization method. Simulation study was conducted with Matlab and three scale coefficients of fuzzy controller (ke, kec, ku) were acquired. And an experimental device was designed and produced. The results indicate that the active suspension system can achieve better vibration isolation performance than passive suspension system, the displacement amplitude of automobile body can be reduced to 55%. Fuzzy control is an effective control method for active suspension system.
基金supported by the National Natural Science Foundation of China (9071602811001128)
文摘A robust adaptive fuzzy control scheme is presented for a class of strict-feedback nonaffine nonlinear systems with modeling uncertainties and external disturbances by using a backstepping approach.Fuzzy logic systems are employed to approximate the unknown parts of the desired virtual controls,and the approximation errors of fuzzy systems are only required to be norm-bounded.The function tanh(·) is introduced to avoid problems associated with sgn(·).The tracking error is guaranteed to be uniformly ultimately bounded with the aid of an additional adaptive compensation term.Chua's circuit system and R o¨ssler system are presented to illustrate the feasibility and effectiveness of the proposed control technique.
基金partially supported by the National Natural Science Foundation of China (60874045,60774017).
文摘The problem of decentralized adaptive fuzzy control for a class of time-delayed interconnected nonlinear systems with unknown backlash-like hystersis is discussed. On the basis of the principle of variable structure control (VSC) and by using the fuzzy systems with linear adjustable parameters that are used to approximate plant unknown functions, a novel decentralized adaptive fuzzy control strategy with a supervisory controller is developed. A general method, which is modeled the backlash-like hysteresis, is proposed and removes the assumption that the boundedness of disturbance, and the slope of the backlash-like hystersis are known constants. Furthermore, the interconnection term is supposed to be pth-order polynomial in time-delayed states. In addition, the plant dynamic uncertainty and modeling errors are adaptively compensated by adjusting the parameters and gains on-line for each subsystems. By theoretical analysis, it is shown that the closed-loop fuzzy control systems are globally stable, with tracking error converging to zero. Simulation results demonstrate the effectiveness of the approach.
基金the National Natural Science Foundation of China (60503024 50634010).
文摘One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the quality of data after this evaluation is satisfactory with the requirement of decision maker. A fuzzy neural network based research method of data quality evaluation is proposed. First, the criteria for the evaluation of data quality are selected to construct the fuzzy sets of evaluating grades, and then by using the learning ability of NN, the objective evaluation of membership is carried out, which can be used for the effective evaluation of data quality. This research has been used in the platform of 'data report of national compulsory education outlay guarantee' from the Chinese Ministry of Education. This method can be used for the effective evaluation of data quality worldwide, and the data quality situation can be found out more completely, objectively, and in better time by using the method.
文摘This paper presents an adaptive fuzzy control scheme based on modified genetic algorithm. In the control scheme, genetic algorithm is used to optimze the nonlinear quantization functions of the controller and some key parameters of the adaptive control algorithm. Simulation results show that this control scheme has satisfactory performance in MIMO systems, chaotic systems and delay systems.
基金surported by Tianjin Science and Technology Development for Higher Education(20051206).
文摘An indirect adaptive fuzzy control scheme is developed for a class of nonlinear discrete-time systems. In this method, two fuzzy logic systems are used to approximate the unknown functions, and the parameters of membership functions in fuzzy logic systems are adjusted according to adaptive laws for the purpose of controlling the plant to track a reference trajectory. It is proved that the scheme can not only guarantee the boundedness of the input and output of the closed-loop system, but also make the tracking error converge to a small neighborhood of the origin. Simulation results indicate the effectiveness of this scheme.
文摘Afuzzy controller based oni mproved Generalized-Membership-Function(GMF) algorithmfor afuel cell generationsys-tem wasintroduced.Under the demands on control in application of the converter,a Field Programmable Gate Array(FPGA) re-alization method to manage the power flow was given.This control systembased onthe proposed modified GMF was proved to bea universal approxi mation systemin theory.The fuzzy control technique was combined with Eletronic Design Automatic(EDA)technique and a paralleling fuzzy controller was i mplemented in FPGA.Paralleling fuzzy controller based oni mproved GMF algo-rithm wasi mplemented on a Cyclone FPGA.The result of si mulation based on QuartusII confirmed the validity of the proposed method.
基金supported by the National Natural Science Foundation of China (6096400460864004+2 种基金50808025)the Fok Ying Tung Education Foundation (122013)the Scientific Research Fund of Hunan Provincial Education Department (08A003)
文摘A novel decentralized indirect adaptive output feedback fuzzy controller is developed for a class of large-scale uncertain nonlinear systems using error filtering.By the properly filtering of the observation error dynamics,the strictly positive-real condition is guaranteed to hold such that the proposed output feedback and adaptation mechanisms are practicable in practice owing to the fact that its implementation does not require the observation error vector itself any more,which corrects the impracticable schemes in the previous literature involved.The presented control algorithm can ensure that all the signals of the closed-loop large-scale system keep uniformly ultimately bounded and that the tracking error converges to zero asymptotically.The decentralized output feedback fuzzy controller can be applied to address the longitudinal control problem of a string of vehicles within an automated highway system(AHS) and the effectiveness of the design procedure is supported by simulation results.
文摘Automation of skill fuzzy control system is an important research aspect of fuzzy control fields. It's significant for those control instances consisted in production and people's daily life. But, how to control a system not movement or behavior rules but only relied on movement parameters, that problem still had not be resolved. This paper proposes a new method used a genetic algorithm based on immune mechanism to learn the degree of membership, at same time, simplifying the corresponding movement equation; its efficiency will be indicated by an example.
文摘In order to overcome difficulty of tuning parameters of fuzzy controller, a chaos optimal design method based on annealing strategy is proposed. First, apply the chaotic variables to search for parameters of fuzzy contro-(ller,) and transform the optimal variables into chaotic variables by carrier-wave method. Making use of the intrinsic stochastic property and ergodicity of chaos movement to escape from the local minimum and direct optimization searching within global range, an approximate global optimal solution is obtained. Then, the chaos local searching and optimization based on annealing strategy are cited, the parameters are optimized again within the limits of the approximate global optimal solution, the optimization is realized by means of combination of global and partial chaos searching, which can converge quickly to global optimal value. Finally, the third order system and discrete nonlinear system are simulated and compared with traditional method of fuzzy control. The results show that the new chaos optimal design method is superior to fuzzy control method, and that the control results are of high precision, with no overshoot and fast response.
文摘A frequency-domain-based sufficient condition is derived to guarantee the globally asymptotic stability of the simplest Takagi-Sugeno (T-S) fuzzy control system by using the circle criterion. The analysis is performed in the frequency domain, and hence the condition is of great significance when the frequency-response method, which is widely used in the linear control theory and practice, is employed to synthesize the simplest T-S fuzzy controller. Besides, this sufficient condition is featured by a graphical interpretation, which makes the condition straightforward to be used. Comparisons are drawn between the performance of the simplest T-S fuzzy controller and that of the linear compensator. Two numerical examples are presented to demonstrate how this sufficient condition can be applied to both stable and unstable plants.
文摘The subjection function of the fuzzy quantity is bell like,which is on the base of the theory;but during the course of the control,each fuzzy grade should be predigested into a triangle of W=4.
基金Supported by the Major Science and Technology Project of Jilin Province(20220301010GX)the International Scientific and Technological Cooperation(20240402071GH).
文摘The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed.
基金Project(2007AA04Z144) supported by the National High-Tech Research and Development Program of ChinaProject(2007421119) supported by the China Postdoctoral Science Foundation
文摘A new kind of volume control hydraulic press that combines the advantages of both hydraulic and SRM(switched reluctance motor) driving technology is developed.Considering that the serious dead zone and time-variant nonlinearity exist in the volume control electro-hydraulic servo system,the ILC(iterative learning control) method is applied to tracking the displacement curve of the hydraulic press slider.In order to improve the convergence speed and precision of ILC,a fuzzy ILC algorithm that utilizes the fuzzy strategy to adaptively adjust the iterative learning gains is put forward.The simulation and experimental researches are carried out to investigate the convergence speed and precision of the fuzzy ILC for hydraulic press slider position tracking.The results show that the fuzzy ILC can raise the iterative learning speed enormously,and realize the tracking control of slider displacement curve with rapid response speed and high control precision.In experiment,the maximum tracking error 0.02 V is achieved through 12 iterations only.
基金Project(51005253) supported by the National Natural Science Foundation of ChinaProject(2007AA04Z344) supported by the National High Technology Research and Development Program of China
文摘A new adaptive Type-2 (T2) fuzzy controller was developed and its potential performance advantage over adaptive Type-1 (T1) fuzzy control was also quantified in computer simulation. Base on the Lyapunov method, the adaptive laws with guaranteed system stability and convergence were developed. The controller updates its parameters online using the laws to control a system and tracks its output command trajectory. The simulation study involving the popular inverted pendulum control problem shows theoretically predicted system stability and good tracking performance. And the comparison simulation experiments subjected to white noige or step disturbance indicate that the T2 controller is better than the T1 controller by 0--18%, depending on the experiment condition and performance measure.