A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of elect...A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of electronic countermeasures, which not only exerts the advantages of the fuzzy theory, but also has a good ability in machine learning and data analysis. The subjective value of sample versus class is computed by the fuzzy computing theory, and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer. Meanwhile, the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples. The simulation result indicates that the proposed algorithm is feasible and effective.展开更多
One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the qu...One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the quality of data after this evaluation is satisfactory with the requirement of decision maker. A fuzzy neural network based research method of data quality evaluation is proposed. First, the criteria for the evaluation of data quality are selected to construct the fuzzy sets of evaluating grades, and then by using the learning ability of NN, the objective evaluation of membership is carried out, which can be used for the effective evaluation of data quality. This research has been used in the platform of 'data report of national compulsory education outlay guarantee' from the Chinese Ministry of Education. This method can be used for the effective evaluation of data quality worldwide, and the data quality situation can be found out more completely, objectively, and in better time by using the method.展开更多
提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络...提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络模型的有效性分析,通过累积触发的方式实现相应模糊规则的增加或删减,使网络模型在能够处理复杂非线性问题的同时降低其冗余性,使模型更为紧凑。采用梯度下降算法对网络模型进行训练。然后,对所提出的SOEFNN模型进行非线性系统仿真实验和污水处理过程中的出水生化需氧量预测建模,并与其他自组织模糊神经网络模型进行对比。仿真结果表明,所提出的SOEFNN模型能够很好地实现结构和参数的自适应调整,并且具有较好的逼近能力。展开更多
针对天基信息支援体系效能评估中存在的主观性强与复杂性高的问题,提出一种基于投影梯度神经网络的天基信息支援体系效能评估方法。首先,基于国防部体系框架(Department of Defense Architecture Framework,DoDAF)视图产品与包以德循环(...针对天基信息支援体系效能评估中存在的主观性强与复杂性高的问题,提出一种基于投影梯度神经网络的天基信息支援体系效能评估方法。首先,基于国防部体系框架(Department of Defense Architecture Framework,DoDAF)视图产品与包以德循环(observation,orientation,decision,action,OODA)梳理体系作战流程,进而建立评估指标体系,并基于离散事件仿真生成效能评估数据样本。然后,基于Rosen-反向传播(back propagation,BP)神经网络构建效能评估代理模型,并通过对权重参数的限制来解决在效益型指标下评估模型难以解释的问题。最后,对仿真样本进行评估模型验证试验,结果表明所提方法在天基信息支援体系效能评估中相较于传统BP神经网络计算性能提升超过50%,能够为天基信息支援体系效能评估提供技术支撑。展开更多
As the“engine”of equipment continuous operation and repeated operation, equipment maintenance support plays a more prominent role in the confrontation of symmetrical combat systems. As the basis and guide for the pl...As the“engine”of equipment continuous operation and repeated operation, equipment maintenance support plays a more prominent role in the confrontation of symmetrical combat systems. As the basis and guide for the planning and implementation of equipment maintenance tasks, the equipment damage measurement is an important guarantee for the effective implementation of maintenance support. Firstly,this article comprehensively analyses the influence factors to damage measurement from the enemy’s attributes, our attributes and the battlefield environment starting from the basic problem of wartime equipment damage measurement. Secondly, this article determines the key factors based on fuzzy comprehensive evaluation(FCE) and performed principal component analysis (PCA) on the key factors. Finally, the principal components representing more than 85%of the data features are taken as the input and the equipment damage quantity is taken as the output. The data are trained and tested by artificial neural network (ANN) and random forest (RF). In a word, FCE-PCA-RF can be used as a reference for the research of equipment damage estimation in wartime.展开更多
文摘A self-organizing fuzzy clustering neural network by combining the self-organizing Kohonen clustering network with the fuzzy theory is proposed. This network model is designed for the effectiveness evaluation of electronic countermeasures, which not only exerts the advantages of the fuzzy theory, but also has a good ability in machine learning and data analysis. The subjective value of sample versus class is computed by the fuzzy computing theory, and the classified results obtained by self-organizing learning of Kohonen neural network are represented on output layer. Meanwhile, the fuzzy competition learning algorithm keeps the similar information between samples and overcomes the disadvantages of neural network which has fewer samples. The simulation result indicates that the proposed algorithm is feasible and effective.
基金the National Natural Science Foundation of China (60503024 50634010).
文摘One of the goals of data collection is preparing for decision-making, so high quality requirement must be satisfied. Rational evaluation of data quality is an effective way to identify data problem in time, and the quality of data after this evaluation is satisfactory with the requirement of decision maker. A fuzzy neural network based research method of data quality evaluation is proposed. First, the criteria for the evaluation of data quality are selected to construct the fuzzy sets of evaluating grades, and then by using the learning ability of NN, the objective evaluation of membership is carried out, which can be used for the effective evaluation of data quality. This research has been used in the platform of 'data report of national compulsory education outlay guarantee' from the Chinese Ministry of Education. This method can be used for the effective evaluation of data quality worldwide, and the data quality situation can be found out more completely, objectively, and in better time by using the method.
文摘提出了一种基于有效性分析的自组织模糊神经网络(self-organizingfuzzyneural network based on effectiveness analysis, SOEFNN)建模方法。首先,提出了一种针对模糊规则的有效性评价指标,利用样本与规则层输出之间的映射关系进行网络模型的有效性分析,通过累积触发的方式实现相应模糊规则的增加或删减,使网络模型在能够处理复杂非线性问题的同时降低其冗余性,使模型更为紧凑。采用梯度下降算法对网络模型进行训练。然后,对所提出的SOEFNN模型进行非线性系统仿真实验和污水处理过程中的出水生化需氧量预测建模,并与其他自组织模糊神经网络模型进行对比。仿真结果表明,所提出的SOEFNN模型能够很好地实现结构和参数的自适应调整,并且具有较好的逼近能力。
文摘As the“engine”of equipment continuous operation and repeated operation, equipment maintenance support plays a more prominent role in the confrontation of symmetrical combat systems. As the basis and guide for the planning and implementation of equipment maintenance tasks, the equipment damage measurement is an important guarantee for the effective implementation of maintenance support. Firstly,this article comprehensively analyses the influence factors to damage measurement from the enemy’s attributes, our attributes and the battlefield environment starting from the basic problem of wartime equipment damage measurement. Secondly, this article determines the key factors based on fuzzy comprehensive evaluation(FCE) and performed principal component analysis (PCA) on the key factors. Finally, the principal components representing more than 85%of the data features are taken as the input and the equipment damage quantity is taken as the output. The data are trained and tested by artificial neural network (ANN) and random forest (RF). In a word, FCE-PCA-RF can be used as a reference for the research of equipment damage estimation in wartime.