期刊文献+
共找到1,123篇文章
< 1 2 57 >
每页显示 20 50 100
Intuitionistic fuzzy C-means clustering algorithms 被引量:22
1
作者 Zeshui Xu Junjie Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第4期580-590,共11页
Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-me... Intuitionistic fuzzy sets(IFSs) are useful means to describe and deal with vague and uncertain data.An intuitionistic fuzzy C-means algorithm to cluster IFSs is developed.In each stage of the intuitionistic fuzzy C-means method the seeds are modified,and for each IFS a membership degree to each of the clusters is estimated.In the end of the algorithm,all the given IFSs are clustered according to the estimated membership degrees.Furthermore,the algorithm is extended for clustering interval-valued intuitionistic fuzzy sets(IVIFSs).Finally,the developed algorithms are illustrated through conducting experiments on both the real-world and simulated data sets. 展开更多
关键词 intuitionistic fuzzy set(IFS) intuitionistic fuzzy Cmeans algorithm clustering interval-valued intuitionistic fuzzy set(IVIFS).
在线阅读 下载PDF
基于VMD和FCM聚类算法的海上风机支撑结构损伤识别方法
2
作者 任义建 刁延松 +1 位作者 吕建达 侯敬儒 《振动与冲击》 北大核心 2025年第8期184-191,286,共9页
利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzz... 利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzzy C-means,FCM)聚类算法进行海上风机支撑结构损伤识别。为剔除响应中的谐波成分,首先利用VMD对加速度响应进行分解,选取结构模态响应(仅含有结构自振频率)作为分析信号。然后计算模态响应的时域、能量和能量比值及样本熵特征构造特征矩阵,利用主成分分析对特征矩阵进行降维,得到损伤特征矩阵。将损伤特征矩阵输入FCM聚类算法,通过聚类分析得到结构的损伤状态。位移激励下海上风机支撑结构损伤识别模型试验数据验证了该方法的有效性。该方法属于无监督学习算法,无需标注标签且不受谐波成分的影响。 展开更多
关键词 海上风机支撑结构 损伤识别 变分模态分解(VMD) 模糊C均值(fcm)聚类算法 无监督学习算法
在线阅读 下载PDF
Using genetic algorithm based fuzzy adaptive resonance theory for clustering analysis 被引量:3
3
作者 LIU Bo WANG Yong WANG Hong-jian 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2006年第B07期547-551,共5页
关键词 聚类分析 遗传算法 模糊自适应谐振理论 人工神经网络
在线阅读 下载PDF
Novel robust approach for constructing Mamdani-type fuzzy system based on PRM and subtractive clustering algorithm 被引量:1
4
作者 褚菲 马小平 +1 位作者 王福利 贾润达 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第7期2620-2628,共9页
A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy syst... A novel approach for constructing robust Mamdani fuzzy system was proposed, which consisted of an efficiency robust estimator(partial robust M-regression, PRM) in the parameter learning phase of the initial fuzzy system, and an improved subtractive clustering algorithm in the fuzzy-rule-selecting phase. The weights obtained in PRM, which gives protection against noise and outliers, were incorporated into the potential measure of the subtractive cluster algorithm to enhance the robustness of the fuzzy rule cluster process, and a compact Mamdani-type fuzzy system was established after the parameters in the consequent parts of rules were re-estimated by partial least squares(PLS). The main characteristics of the new approach were its simplicity and ability to construct fuzzy system fast and robustly. Simulation and experiment results show that the proposed approach can achieve satisfactory results in various kinds of data domains with noise and outliers. Compared with D-SVD and ARRBFN, the proposed approach yields much fewer rules and less RMSE values. 展开更多
关键词 Mamdani-type fuzzy system robust system subtractive clustering algorithm outlier partial robust M-regression
在线阅读 下载PDF
Application of a New Fuzzy Clustering Algorithm in Intrusion Detection
5
作者 WU Tiefeng 《现代电子技术》 2008年第4期100-102,共3页
This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the archite... This paper presents a new Section Set Adaptive FCM algorithm.The algorithm solved the shortcomings of local optimality,unsure classification and clustering numbers ascertained previously.And it improved on the architecture of FCM al- gorithm,enhanced the analysis for effective clustering.During the clustering processing,it may adjust clustering numbers dy- namically.Finally,it used the method of section set decreasing the time of classification.By experiments,the algorithm can im- prove dependability of clustering and correctness of classification. 展开更多
关键词 模糊聚类算法 干扰检测 计算机技术 fcm
在线阅读 下载PDF
联合RGB属性融合与FCM聚类算法的浅海浊积砂体精细表征——以莺歌海盆地X气田为例
6
作者 赵兴 李磊 +5 位作者 薛国庆 张忠坡 袁晓婷 柴亚伟 杨潘 徐勇 《海洋地质前沿》 北大核心 2025年第8期40-54,共15页
浅海浊流沉积体系控制下X气田浊积砂体沉积特征复杂、空间展布不清,制约着油气资源的开发。基于测井、岩芯、三维地震等资料,联合分频RGB属性融合技术与FCM聚类算法开展浊积砂体精细表征,取得以下3点认识:①研究区浊积砂体表现出强振幅... 浅海浊流沉积体系控制下X气田浊积砂体沉积特征复杂、空间展布不清,制约着油气资源的开发。基于测井、岩芯、三维地震等资料,联合分频RGB属性融合技术与FCM聚类算法开展浊积砂体精细表征,取得以下3点认识:①研究区浊积砂体表现出强振幅高连续性的地震反射特征,15、35、55 Hz分频地震属性切片的RGB融合效果与浊积砂体的空间展布响应程度最佳,砂体预测厚度与实际钻遇砂体厚度较为吻合,相关系数R^(2)约为0.94;②FCM算法能够完成优选地震属性的有效聚类,依据5个聚类组的平面特征,初步划分出3类浊积砂体;③研究区泥质沉积背景上发育带状侧积体、环状侧积体、水道堤岸、水道-分支水道、近端朵体、远端朵体6类沉积单元,预测环状、带状侧积体、远端朵体为有利砂体。 展开更多
关键词 浅海浊流 浊积砂体 RGB属性融合 fcm算法 聚类分析
在线阅读 下载PDF
农业机器人采摘目标识别技术研究——基于FCM模糊聚类算法 被引量:3
7
作者 冯高峰 《农机化研究》 北大核心 2024年第3期30-33,41,共5页
介绍了FCM(Fuzzy C-Means)模糊聚类算法的原理,采用权重分配的方法对该算法进行了改进,通过建立模糊的相似矩阵,对目标对象的特征聚类图进行分析,并引入隶属度矩阵对FCM算法进行优化,以加快算法的迭代速度。实验结果表明:农业机器人采... 介绍了FCM(Fuzzy C-Means)模糊聚类算法的原理,采用权重分配的方法对该算法进行了改进,通过建立模糊的相似矩阵,对目标对象的特征聚类图进行分析,并引入隶属度矩阵对FCM算法进行优化,以加快算法的迭代速度。实验结果表明:农业机器人采用该方法对农作物轮廓分割识别度较高,算法计算效率较快,验证了其可靠性,该方法可用于目标农作物的分割和目标识别。 展开更多
关键词 农业机器人 fcm 模糊聚类 隶属度矩阵 目标识别
在线阅读 下载PDF
基于改进FCM的冲压件缺陷图像分割算法
8
作者 张玉杰 高晗 《计算机工程》 CAS CSCD 北大核心 2024年第10期342-351,共10页
在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对... 在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对上述问题,提出一种改进的FCM算法。采用内核诱导距离中的简单两项代替传统的欧氏距离,将原有的空间像素映射到高维特征空间,提高线性可分概率和计算速度;利用图像像素之间的空间相关性,通过引入改进的马尔可夫随机场对FCM目标函数进行修正,提高算法的抗噪能力以及分割精度;采用秃鹰搜索(BES)算法确定FCM的初始聚类中心,提高算法的收敛速度,同时避免算法陷入局部极值的情况。为验证改进FCM算法的性能,选取划分熵、划分系数、Xie_Beni系数以及迭代次数作为评价指标,并与近年来先进的图像分割算法进行对比。实验结果表明,改进FCM算法具有更好的抗噪能力,能得到更好的缺陷分割效果,对工业生产中的冲压件缺陷检测有一定的应用价值。 展开更多
关键词 模糊C均值聚类 工业应用 冲压件缺陷 内核诱导距离 马尔可夫随机场 秃鹰搜索算法
在线阅读 下载PDF
基于FCM及快速迭代收缩阈值算法的平面ECT图像重建
9
作者 张立峰 唐志浩 《计量学报》 CSCD 北大核心 2024年第6期899-906,共8页
为提高平面阵列电容成像系统的成像精度,提出一种基于模糊C均值聚类(FCM)进行数据优化的快速迭代收缩阈值算法(FISTA)。根据平面阵列电容数据的特点,首先利用FCM算法对测量电容值进行分类,保留有效电容值,实现电容向量降维;然后利用离... 为提高平面阵列电容成像系统的成像精度,提出一种基于模糊C均值聚类(FCM)进行数据优化的快速迭代收缩阈值算法(FISTA)。根据平面阵列电容数据的特点,首先利用FCM算法对测量电容值进行分类,保留有效电容值,实现电容向量降维;然后利用离散小波基(DWT)对灰度值进行稀疏表示,并建立L1正则化模型,采用FISTA进行求解,以实现图像重建;最后将FCM处理后的电容值分别用于Landweber算法、Tikhonov算法进行重建对比。仿真与实验结果表明,该算法重建图像的平均相对误差约为0.0527,平均相关系数约为0.9422,均优于其它算法,且重建图像伪影较少,更接近真实情况;因此,所提算法具有更好的重建效果。。 展开更多
关键词 电容层析成像 平面阵列电容 图像重建 模糊C均值聚类 快速迭代收缩阈值算法 缺陷检测
在线阅读 下载PDF
基于改进FCM聚类的光伏电站出力场景特性研究 被引量:7
10
作者 苗璐 樊玮 +3 位作者 肖红燕 刘宇 陈德扬 张勇军 《广东电力》 北大核心 2024年第3期1-11,共11页
为提高新型电力系统的运行安全可靠性,需要对光伏电站的出力特性进行量化评估,并从高不确定性的众多发电场景中掌握光伏电站的运行规律。为此,基于场景聚类和缩减原理对光伏出力进行分析。首先提出光伏出力特性的评价指标,包括波动性和... 为提高新型电力系统的运行安全可靠性,需要对光伏电站的出力特性进行量化评估,并从高不确定性的众多发电场景中掌握光伏电站的运行规律。为此,基于场景聚类和缩减原理对光伏出力进行分析。首先提出光伏出力特性的评价指标,包括波动性和出力效率2个一级指标和相应的二级指标;然后采用模糊C均值(fuzzy C-means,FCM)聚类算法,基于密度思想和距离最大、最小原则确定初始聚类中心,通过不断迭代得到不同场景下光伏出力的聚类结果。考虑到传统聚类算法存在局部收敛性,难以确定最优聚类数目,提出结合聚类有效性指标来确定聚类最优数目,进而采用基于概率距离的前推回代法对得到的聚类结果进行场景削减,最终得到光伏电站季节典型出力场景。最后基于广东省某光伏电站实际出力数据进行分析,验证所提指标和算法的有效性。 展开更多
关键词 光伏出力场景 聚类算法 场景缩减 fcm算法 聚类指标
在线阅读 下载PDF
基于FCM和EO-SVM水轮机尾水管压力脉动特征识别 被引量:2
11
作者 刘茜媛 王利英 +1 位作者 张路遥 曹庆皎 《水电能源科学》 北大核心 2024年第1期162-165,共4页
为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾... 为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾水管压力脉动特征识别中的应用。然后采用模糊C均值聚类算法将待分类的压力脉动特征进行初始聚类,将其分为四类,并依据聚类结果选择最靠近每类中心的样本作为EO-SVM模型的训练样本。将SVM和EO-SVM两种模型的识别分类结果进行比较,验证了所提EO-SVM模型的有效性。 展开更多
关键词 压力脉动 小波包分析 模糊C均值聚类 平衡优化器算法 支持向量机
在线阅读 下载PDF
复杂环境下无线传感器节点集群动态调度算法设计
12
作者 刘张榕 许力 《传感技术学报》 北大核心 2025年第6期1127-1132,共6页
在复杂环境下无线传感器节点调度目标选择混乱,导致传感器节点接收到的目标信息存在误差,影响无线传感器节点动态调度精度和网络能耗,为此提出复杂环境下无线传感器节点集群动态调度算法。计算异构集群系统中的计算节点和通信能耗,将总... 在复杂环境下无线传感器节点调度目标选择混乱,导致传感器节点接收到的目标信息存在误差,影响无线传感器节点动态调度精度和网络能耗,为此提出复杂环境下无线传感器节点集群动态调度算法。计算异构集群系统中的计算节点和通信能耗,将总能量损耗作为约束条件。通过应用反转镜技术、Kalman滤波、模糊C均值聚类算法,对传感网络节点的空间环境进行重组和优化。计算节点集群调度的最优化函数,选择合适的集群头节点和数量,考虑节点的距离、速度等重要性因素,确定节点调度任务分配策略,定期调整集群头节点、节点位置,动态调整集群调度策略。仿真结果表明,所提方法集群调度的负载均衡度数值为18.5,节点动态调度精度平均值为85.6%,调度耗时平均值为0.17 ms。 展开更多
关键词 无线传感器 节点动态调度 模糊C均值聚类算法 协同Kalman滤波 集群调度算法
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
13
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊C均值聚类 简单线性迭代聚类 K-means++算法
在线阅读 下载PDF
满足本地差分隐私的混合噪音感知的模糊C均值聚类算法 被引量:3
14
作者 张朋飞 程俊 +4 位作者 张治坤 方贤进 孙笠 王杰 姜茸 《电子与信息学报》 北大核心 2025年第3期739-757,共19页
在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪... 在大数据和物联网应用中,本地差分隐私(LDP)技术用于保护聚类分析中的用户隐私,但现有方法要么在LDP下交互式地进行聚类,需要消耗大量隐私预算,要么没有同时考虑到聚类数据中蕴含的表示数据质量的高斯噪音以及为满足LDP保护的拉普拉斯噪音,致使聚类精度低下。同时,对于衡量用户提交数据和簇心之间的距离选择较为武断,没有充分利用到用户提交的噪音数据中蕴含的噪音模式。为此,该文创新性地提出一种满足LDP的混合噪音感知的模糊C均值聚类算法(mnFCM),该算法的主要思想是同时建模用户上传数据中蕴含的表示用户质量的高斯噪音以及为保护用户数据注入的拉普拉斯噪音,进而设计出混合噪音感知的距离替代传统的欧式距离,来衡量样本数据与簇心间的相似性。特别地,在mnFCM中,该文首先设计了混合噪音感知的距离计算方法,在此基础上给出算法新的目标函数,并基于拉格朗日乘子法设计了求解方法,最后理论上分析了求解算法的收敛性。该文进一步理论分析了mnFCM的隐私、效用和复杂度,分析结果表明所提算法严格满足LDP、相对于对比算法更接近非隐私下的簇心以及和非隐私算法具有接近的复杂度。在两个真实数据集上的实验结果表明,mnFCM在满足LDP下,聚类精度提高了10%~15%。 展开更多
关键词 聚类分析 隐私保护 本地差分隐私 模糊C均值聚类 拉普拉斯机制
在线阅读 下载PDF
模糊C-均值(FCM)聚类算法的实现 被引量:35
15
作者 孙晓霞 刘晓霞 谢倩茹 《计算机应用与软件》 CSCD 北大核心 2008年第3期48-50,共3页
传统的FCM算法能够将靠近边界的具有固有形状的两个簇合并成为一个大的簇。然而,对于一些稍微复杂的数据,如果没有其它的像去除小簇之类的机制的话,FCM算法很难将非常接近的类聚类到一起。给出的聚类算法是在传统FCM算法的循环之后添加... 传统的FCM算法能够将靠近边界的具有固有形状的两个簇合并成为一个大的簇。然而,对于一些稍微复杂的数据,如果没有其它的像去除小簇之类的机制的话,FCM算法很难将非常接近的类聚类到一起。给出的聚类算法是在传统FCM算法的循环之后添加了去除掉空簇的步骤,解决了上述很难将非常接近的类聚到一个簇中的问题。另外,为便于选出最优结果,在递归之后又添加了计算聚类有效性的步骤。最后用Java实现了该算法并在数据集上进行了实验,证实了改进方法的有效性。 展开更多
关键词 模糊聚类 fcm算法 聚类有效性
在线阅读 下载PDF
基于LMD近似熵和FCM聚类的机械故障诊断研究 被引量:97
16
作者 张淑清 孙国秀 +2 位作者 李亮 李新新 监雄 《仪器仪表学报》 EI CAS CSCD 北大核心 2013年第3期714-720,共7页
提出一种基于局部均值分解(local mean decomposition,LMD)近似熵和模糊C均值聚类(fuzzy C-means clustering,FCM)相结合的机械故障诊断方法。首先对机械振动信号进行LMD分解,得到若干具有物理意义的乘积函数(product function,PF)分量... 提出一种基于局部均值分解(local mean decomposition,LMD)近似熵和模糊C均值聚类(fuzzy C-means clustering,FCM)相结合的机械故障诊断方法。首先对机械振动信号进行LMD分解,得到若干具有物理意义的乘积函数(product function,PF)分量,再通过相关性分析,筛选出与原始信号相关性最大的3个分量作为数据源,求取其近似熵作为特征向量,最后通过FCM模糊聚类对特征向量进行识别分类。实验表明,基于LMD近似熵和FCM模糊聚类相结合的方法对机械故障信号能够有效准确地进行识别分类,此外,将该方法与基于EMD近似熵和FCM结合的方法进行对比,结果表明该方法具有更好的故障识别效果。 展开更多
关键词 局部均值分解 模糊C均值聚类 近似熵 故障诊断
在线阅读 下载PDF
半监督FCM聚类算法目标函数研究 被引量:14
17
作者 李春芳 庞雅静 +1 位作者 钱丽璞 高爱华 《计算机工程与应用》 CSCD 北大核心 2009年第14期128-132,135,共6页
分析了现有半监督FCM算法目标函数的物理意义和平衡系数α的选取,说明Stutz对Pedrycz目标函数的修改使半监督的物理意义更清楚,它在α=1,0时均退化为标准FCM算法,给出了修改后SS-FCM算法的交替求解过程。实验结果:(1)修改算法与Pedrycz... 分析了现有半监督FCM算法目标函数的物理意义和平衡系数α的选取,说明Stutz对Pedrycz目标函数的修改使半监督的物理意义更清楚,它在α=1,0时均退化为标准FCM算法,给出了修改后SS-FCM算法的交替求解过程。实验结果:(1)修改算法与Pedrycz算法有相同的半监督作用和清楚的物理解释;(2)对labeled样本采用FCM算法赋值比用随机数的收敛稳定性高;(3)优选的少量labeled样本,使用模糊协方差的SS-CFCM算法提高了聚类准确性和收敛速度。 展开更多
关键词 模糊C均值(fcm)算法 半监督聚类 目标函数 模糊协方差
在线阅读 下载PDF
结合FCMS与变分水平集的图像分割模型 被引量:26
18
作者 唐利明 田学全 +1 位作者 黄大荣 王晓峰 《自动化学报》 EI CSCD 北大核心 2014年第6期1233-1248,共16页
提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空... 提出了一个结合融合空间约束的模糊C均值(Fuzzy C means with spatial constraints,FCMS)聚类与变分水平集的图像模糊聚类分割模型.在该模型中引入了一个基于图像局部信息和空间信息的外部模糊聚类能量,从而可以获取精确的局部图像的空间特征,使得本文模型对噪声图像的聚类分割具有较强的鲁棒性.采用不同类型的实验图像,将本文模型与10个不同类型的图像分割模型进行了对比实验,实验结果显示本文模型能克服图像中噪声影响并取得较满意的聚类分割结果. 展开更多
关键词 变分水平集 图像聚类 图像分割 fcmS聚类 隶属度 聚类中心
在线阅读 下载PDF
FCM算法用于灰度图象分割的研究 被引量:50
19
作者 丁震 胡钟山 +1 位作者 杨静宇 唐振民 《电子学报》 EI CAS CSCD 北大核心 1997年第5期39-43,共5页
模糊C均值(FCM)算法用于灰度图象分割是一种非监督模糊聚类后再标定的过程,适合灰度图象中存在着模糊和不确定性的特点.但是这种算法存在着一些不足,如聚类数目无法自动确定、运算的开销太大等,因而限制了这种方法的应用.针... 模糊C均值(FCM)算法用于灰度图象分割是一种非监督模糊聚类后再标定的过程,适合灰度图象中存在着模糊和不确定性的特点.但是这种算法存在着一些不足,如聚类数目无法自动确定、运算的开销太大等,因而限制了这种方法的应用.针对这些问题,本文利用直方图分析的方法,自动确定算法的聚类数目和各类的类峰值.并针对FCM算法和灰度图象的特点,提出了一种适用于灰度图象分割的快速FCM算法(QFCM),使得运算的开销降低,聚类分割的速度显著提高,并从数学和实验上证明了该方法的有效性. 展开更多
关键词 图象分割 模糊聚类 fcm算法 计算机视觉
在线阅读 下载PDF
基于多特征和FCM的图像边缘检测方法 被引量:17
20
作者 张麟兮 王保平 +2 位作者 张艳宁 李南京 郭芳 《光子学报》 EI CAS CSCD 北大核心 2005年第12期1893-1896,共4页
提出了一种新的基于多特征和FCM的边缘检测算法.该方法根据边缘点附近灰度分布特点构造了多个反映边缘特性的特征分量,并利用输入图像提取该组特征分量,组成一个反映图像边缘特征的数据集.用FCM聚类算法将该数据集分为两类,即边缘点数... 提出了一种新的基于多特征和FCM的边缘检测算法.该方法根据边缘点附近灰度分布特点构造了多个反映边缘特性的特征分量,并利用输入图像提取该组特征分量,组成一个反映图像边缘特征的数据集.用FCM聚类算法将该数据集分为两类,即边缘点数据和非边缘点数据,实现边缘检测.该方法无需确定阈值,对弱边缘检测较敏感,在特征的选取上充分考虑了边缘和噪声的本质区别,因而具有优异的抗噪性能. 展开更多
关键词 多边缘特征 边缘检测 fcm
在线阅读 下载PDF
上一页 1 2 57 下一页 到第
使用帮助 返回顶部