期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
基于自适应近邻信息的模糊C均值聚类算法 被引量:1
1
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊C均值聚类 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
近邻样本密度和隶属度加权FCM算法的遥感图像分类方法 被引量:12
2
作者 刘小芳 何彬彬 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第10期2242-2247,共6页
针对FCM算法具有对数据集进行等划分趋势的缺陷,利用样本本身的近邻分布特性,提出近邻样本密度加权FCM(NSD-WFCM)、近邻样本隶属度加权FCM(NSM-WFCM)以及近邻样本密度和隶属度加权FCM(NSDM-WFCM)算法,并应用于遥感图像分类。对比FCM算法... 针对FCM算法具有对数据集进行等划分趋势的缺陷,利用样本本身的近邻分布特性,提出近邻样本密度加权FCM(NSD-WFCM)、近邻样本隶属度加权FCM(NSM-WFCM)以及近邻样本密度和隶属度加权FCM(NSDM-WFCM)算法,并应用于遥感图像分类。对比FCM算法,NSD-WFCM、NSM-WFCM和NSDM-WFCM算法的总体分类精度和Kappa系数分别提高了5.67%、7.50%和11.17%;8.50%、11.25%和16.75%。实验结果表明:这些加权方法都在一定程度上克服了FCM算法的缺陷,提高了遥感图像的无监督分类能力,其中,NSM-WFCM算法的分类性能优于NSD-WFCM算法的分类性能,NSDM-WFCM算法分类性能最好。 展开更多
关键词 遥感图像分类 FCM算法 加权FCM算法 近邻样本密度 近邻样本隶属度
在线阅读 下载PDF
一种高效的模糊规则自动生成方法 被引量:7
3
作者 王剑 沈理 巢菊芬 《计算机研究与发展》 EI CSCD 北大核心 1999年第2期139-143,共5页
文中提出一种模糊规则自动生成方法.该方法借助K-Nearest-Neighbor的概念确定控制曲面的关键点,然后根据关键点确定模糊划分,并由此构造模糊神经网络学习模糊规则.神经网络采用BP算法学习,在学习过程中可根据... 文中提出一种模糊规则自动生成方法.该方法借助K-Nearest-Neighbor的概念确定控制曲面的关键点,然后根据关键点确定模糊划分,并由此构造模糊神经网络学习模糊规则.神经网络采用BP算法学习,在学习过程中可根据收敛情况适当增加模糊分区,并重构神经网络继续学习.该方法能生成较精简的规则集。 展开更多
关键词 模糊规则 自动生成 模糊控制 BP算法
在线阅读 下载PDF
基于RBFNN的DMFC温度建模与神经模糊控制研究 被引量:12
4
作者 戚志东 朱新坚 曹广益 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第1期126-129,137,共5页
为了提高燃料电池的发电性能,直接甲醇燃料电池(DMFC)堆的运行温度应该控制在一个合适的范围内。简单介绍了利用RBF神经网络基于实验的输入输出数据建立DMFC电堆温度模型的方法,避开了电堆的内部复杂性;在控制过程中,将训练好的网络模... 为了提高燃料电池的发电性能,直接甲醇燃料电池(DMFC)堆的运行温度应该控制在一个合适的范围内。简单介绍了利用RBF神经网络基于实验的输入输出数据建立DMFC电堆温度模型的方法,避开了电堆的内部复杂性;在控制过程中,将训练好的网络模型作为DMFC控制系统的参考模型,采用一种改进的模糊遗传算法(FGA)在线对神经模糊控制器的参数进行自适应调整,采用最近邻聚类算法(NNCA)对控制器的模糊规则库进行更新。在仿真实验中,将所提出的算法与非线性PID和传统模糊算法进行比较,结果表明所设计的神经模糊控制器具有较好的性能。 展开更多
关键词 直接甲醇燃料电池 径向基函数神经网络(RBFNN) 模糊遗传算法(FGA) 最近邻聚类算法
在线阅读 下载PDF
基于空间势函数加权的模糊C均值聚类分割算法 被引量:4
5
作者 杨勇 黄淑英 张锋 《计算机工程》 CAS CSCD 北大核心 2007年第13期191-193,212,共4页
提出了一种基于空间势函数加权的FCM图像分割新算法。该方法将空间邻域的势函数信息融入到原始的FCM算法中,权重在该方法中起核心作用,它是根据最近邻(k-NN)算法的原则将势函数信息扩展到邻域像素中。算法中使用基于统计直方图的快速FC... 提出了一种基于空间势函数加权的FCM图像分割新算法。该方法将空间邻域的势函数信息融入到原始的FCM算法中,权重在该方法中起核心作用,它是根据最近邻(k-NN)算法的原则将势函数信息扩展到邻域像素中。算法中使用基于统计直方图的快速FCM算法进行初始化,收敛速度大大提高。实验结果表明了该方法的有效性及其对噪声的较强鲁棒性。 展开更多
关键词 模糊C均值 势函数 最近邻算法 图像分割
在线阅读 下载PDF
基于邻域信息的遥感图像模糊聚类及并行算法设计 被引量:3
6
作者 龚雪晶 慈林林 姚康泽 《计算机应用》 CSCD 北大核心 2007年第10期2512-2514,2517,共4页
在运用于遥感图像的分类时,为考虑图像像元间的空间相关性,首先在聚类的迭代过程中根据相邻像元的隶属度,确定邻域内的优势类别,同时引入反映空间相邻关系的加权系数,修正中心像元的隶属度。其次考虑算法用于图像分割的通信复杂度及动... 在运用于遥感图像的分类时,为考虑图像像元间的空间相关性,首先在聚类的迭代过程中根据相邻像元的隶属度,确定邻域内的优势类别,同时引入反映空间相邻关系的加权系数,修正中心像元的隶属度。其次考虑算法用于图像分割的通信复杂度及动态聚类时的空间相邻关系,提出了相应的并行实现方案。最后,通过实验数据证明了算法在减少聚类的迭代次数以及提高聚类结果精度等方面的有效性,其并行方案也取得了较好的线性加速比。 展开更多
关键词 模糊C均值聚类算法 邻域信息 模糊隶属度 并行算法
在线阅读 下载PDF
融合KNN优化的密度峰值和FCM聚类算法 被引量:11
7
作者 兰红 黄敏 《计算机工程与应用》 CSCD 北大核心 2021年第9期81-88,共8页
针对模糊C均值(Fuzzy C-Means,FCM)聚类算法对初始聚类中心和噪声敏感、对边界样本聚类不够准确且易收敛于局部极小值等问题,提出了一种K邻近(KNN)优化的密度峰值(DPC)算法和FCM相结合的融合聚类算法(KDPC-FCM)。算法利用样本的K近邻信... 针对模糊C均值(Fuzzy C-Means,FCM)聚类算法对初始聚类中心和噪声敏感、对边界样本聚类不够准确且易收敛于局部极小值等问题,提出了一种K邻近(KNN)优化的密度峰值(DPC)算法和FCM相结合的融合聚类算法(KDPC-FCM)。算法利用样本的K近邻信息定义样本局部密度,快速准确搜索样本的密度峰值点样本作为初始类簇中心,改善FCM聚类算法存在的不足,从而达到优化FCM聚类算法效果的目的。在多个UCI数据集、单个人造数据集、多种基准数据集和Geolife项目中的6个较大规模数据集上的实验结果表明,改进后的新算法与传统FCM算法、DSFCM算法对比,有着更好的抗噪性、聚类效果和更快的全局收敛速度,证明了新算法的可行性和有效性。 展开更多
关键词 模糊C均值 聚类 密度峰值 K近邻 算法优化
在线阅读 下载PDF
K-近邻估计协同系数的协同模糊C均值算法 被引量:3
8
作者 赵慧珍 刘付显 李龙跃 《计算机工程与应用》 CSCD 北大核心 2016年第19期19-24,30,共7页
针对现有协同模糊C均值算法(CFC)的协同系数不能充分描述数据子集间协同关系的问题,提出K-近邻估计协同系数的协同模糊C均值算法(β_K-CFC)。用模糊C均值算法(FCM)求出各数据子集的隶属度和聚类中心;其次设定近邻数,求出子集在各聚类中... 针对现有协同模糊C均值算法(CFC)的协同系数不能充分描述数据子集间协同关系的问题,提出K-近邻估计协同系数的协同模糊C均值算法(β_K-CFC)。用模糊C均值算法(FCM)求出各数据子集的隶属度和聚类中心;其次设定近邻数,求出子集在各聚类中心处的密度,形成密度矩阵;根据密度矩阵的相关性设定变化的协同系数;最后用变化的协同系数进行协同聚类。实验证明K-近邻估计协同系数的协同模糊C均值算法(β_K-CFC)能够充分描述数据子集间的协同关系,聚类性能较好。 展开更多
关键词 K-近邻 密度 模糊C均值 协同系数
在线阅读 下载PDF
基于网格相对密度差的扩展聚类算法 被引量:12
9
作者 黄红伟 黄天民 《计算机应用研究》 CSCD 北大核心 2014年第6期1702-1705,共4页
针对现有的多密度聚类算法对参数依赖性较高、聚类精度较低等问题,提出一种基于网格相对密度差的扩展聚类算法(ECRGDD)。首先,该算法给出一种网格划分方法,通过统计数据点的分布情况选取相对密集区域,采用近邻估计法计算网格划分大小的... 针对现有的多密度聚类算法对参数依赖性较高、聚类精度较低等问题,提出一种基于网格相对密度差的扩展聚类算法(ECRGDD)。首先,该算法给出一种网格划分方法,通过统计数据点的分布情况选取相对密集区域,采用近邻估计法计算网格划分大小的标准;接着,提出网格相对密度差的概念,根据网格密度值选取初始单元,通过计算网格之间的相对密度差围绕初始单元进行扩展聚类;最后,给出边界点提取技术,采用构建模糊函数的方法对边界单元进行处理。实验结果表明,该算法能有效地对不规则、多样化分布的数据集进行聚类,并能较好地分离出噪声,聚类精度较高。 展开更多
关键词 多密度聚类算法 网格相对密度差 扩展聚类 近邻估计法 边界点 模糊函数
在线阅读 下载PDF
面向非球形分布数据的自适应K近邻聚类算法 被引量:3
10
作者 黄晓斌 万建伟 张燕 《计算机工程》 CAS CSCD 北大核心 2003年第11期21-22,165,共3页
针对传统聚类算法处理非球形分布数据的不足,提出了一种新型的自适应K近邻 聚类算法。该算法由数据集归一化、初始类别构造和初始类别融合3个步骤构成。仿真结果 表明,该算法在无须聚类数目的前提下,对非球型分布数据具有很好的聚类... 针对传统聚类算法处理非球形分布数据的不足,提出了一种新型的自适应K近邻 聚类算法。该算法由数据集归一化、初始类别构造和初始类别融合3个步骤构成。仿真结果 表明,该算法在无须聚类数目的前提下,对非球型分布数据具有很好的聚类效果。 展开更多
关键词 非球形分布 模糊C均值聚类算法(FCA) 自适应K近邻聚类算法(AKNNCA)
在线阅读 下载PDF
基于计算统一设备架构的高铁故障诊断方法 被引量:3
11
作者 陈志 李天瑞 +1 位作者 李明 杨燕 《计算机应用》 CSCD 北大核心 2015年第10期2819-2823,共5页
为解决传统高铁振动信号故障诊断方法速度慢、难以满足实时处理的要求,提出一种基于计算统一设备架构(CUDA)加速的高铁振动信号故障诊断方法。首先利用CUDA架构对高铁数据进行经验模态分解(EMD),进而计算分解所得到的各个分量的模糊熵,... 为解决传统高铁振动信号故障诊断方法速度慢、难以满足实时处理的要求,提出一种基于计算统一设备架构(CUDA)加速的高铁振动信号故障诊断方法。首先利用CUDA架构对高铁数据进行经验模态分解(EMD),进而计算分解所得到的各个分量的模糊熵,最后利用最近邻分类(KNN)算法对多个模糊熵特征组成的特征空间进行故障分类。实验结果表明,该方法能高效地对高铁振动信号进行故障分类,运行速度较传统方法有明显提高。 展开更多
关键词 故障诊断 计算统一设备架构 经验模态分解 模糊熵 最近邻分类算法
在线阅读 下载PDF
改进RBFNN求机械臂轨迹跟踪的研究 被引量:2
12
作者 魏娟 杨恢先 谢海霞 《计算机工程与应用》 CSCD 北大核心 2011年第5期216-219,共4页
为了使机械臂准确跟踪目标轨迹,达到控制精度高、实时性好的目的,提出一种改进的径向基函数(RBF)模糊神经网络算法。该算法采用模糊遗传算法在线调整神经模糊控制器的参数,对其参数进行改进和优化,同时采用最近邻聚类算法对控制器的模... 为了使机械臂准确跟踪目标轨迹,达到控制精度高、实时性好的目的,提出一种改进的径向基函数(RBF)模糊神经网络算法。该算法采用模糊遗传算法在线调整神经模糊控制器的参数,对其参数进行改进和优化,同时采用最近邻聚类算法对控制器的模糊规则库进行更新。仿真结果表明,该算法与传统的神经网络算法相比具有较好的性能,学习速度快,跟踪精度高,并具有良好的控制性能和自学习能力。 展开更多
关键词 踪迹跟踪 径向基函数神经网络 模糊遗传算法 最近邻聚类算法
在线阅读 下载PDF
一种改进的自适应K近邻聚类算法 被引量:2
13
作者 黄晓斌 万建伟 张燕 《计算机工程与应用》 CSCD 北大核心 2004年第15期76-78,130,共4页
为解决传统聚类算法不能处理非球形分布数据的问题,文犤5犦提出了一种自适应k近邻聚类算法。该算法在无需聚类数目的前提下,能有效解决非球形分布数据的聚类问题。但进一步的研究表明,该算法在处理带“奇异”样本的数据集时失去效果。为... 为解决传统聚类算法不能处理非球形分布数据的问题,文犤5犦提出了一种自适应k近邻聚类算法。该算法在无需聚类数目的前提下,能有效解决非球形分布数据的聚类问题。但进一步的研究表明,该算法在处理带“奇异”样本的数据集时失去效果。为此,该文给出了一种改进的自适应k近邻聚类算法。仿真结果表明,新算法不仅保持了原算法在处理非球形分布数据时的优良特性,还成功解决了“奇异”样本问题。 展开更多
关键词 非球形分布 模糊C均值聚类算法(FCA) 自适应k近邻聚类算法(AKNNCA)改进自适应k近邻聚类算法(IAKNNCA)
在线阅读 下载PDF
基于EM的模糊-粗糙集最近邻算法 被引量:1
14
作者 何力 卢冰原 《计算机工程》 CAS CSCD 北大核心 2010年第24期136-138,共3页
针对由类的重叠引起的训练样本模糊不确定性,以及属性不足引起的类边界粗糙不确定性,提出一种基于期望-最大化(EM)的模糊-粗糙集最近邻分类算法——EM-FRNN。利用UCI数据库的突发性水污染事件案例进行实验,实验结果表明,与朴素的KNN、... 针对由类的重叠引起的训练样本模糊不确定性,以及属性不足引起的类边界粗糙不确定性,提出一种基于期望-最大化(EM)的模糊-粗糙集最近邻分类算法——EM-FRNN。利用UCI数据库的突发性水污染事件案例进行实验,实验结果表明,与朴素的KNN、模糊最近邻算法、模糊粗糙最近邻算法相比,该算法的运算精度高且计算成本较低。 展开更多
关键词 最近邻 模糊-粗糙集 期望-最大化 EM—FRNN算法
在线阅读 下载PDF
基于蛋白质哈斯矩阵图的分泌蛋白预测 被引量:1
15
作者 肖绚 徐培杰 《计算机工程与应用》 CSCD 北大核心 2011年第32期170-172,220,共4页
因为研究分泌蛋白质有助于找到直接与特定生理或病理状态相关的生物分子,判断一条未知蛋白是否为分泌蛋白是非常重要的。基于同一类型蛋白质的哈斯矩阵图具有相似图像纹理假设,提取图像的几何矩作为伪氨基酸成分对未知蛋白质序列是否属... 因为研究分泌蛋白质有助于找到直接与特定生理或病理状态相关的生物分子,判断一条未知蛋白是否为分泌蛋白是非常重要的。基于同一类型蛋白质的哈斯矩阵图具有相似图像纹理假设,提取图像的几何矩作为伪氨基酸成分对未知蛋白质序列是否属于分泌蛋白进行预测,采用Jackknife算法进行测试,预测成功率与现有算法相比有很大的提高。 展开更多
关键词 分泌蛋白 哈斯矩阵 模糊K近邻算法 Jackknife测试
在线阅读 下载PDF
模糊逻辑系统的最近邻聚类学习算法
16
作者 李青茹 王培峰 尹志宇 《组合机床与自动化加工技术》 北大核心 2004年第1期65-66,共2页
文章先提出了一种最优模糊逻辑系统 ,它能使样本中所有的输入—输出数据对都拟合到任意给定的精度 (在此意义上的最优 ) ;然后将这种最优模糊逻辑系统推广到大样本问题 ,为此 ,将样本数据用最近邻聚类算法进行分组 ,将每一组数据 (一个... 文章先提出了一种最优模糊逻辑系统 ,它能使样本中所有的输入—输出数据对都拟合到任意给定的精度 (在此意义上的最优 ) ;然后将这种最优模糊逻辑系统推广到大样本问题 ,为此 ,将样本数据用最近邻聚类算法进行分组 ,将每一组数据 (一个聚类 )视为一个数据对 ,用最优模糊逻辑系统来进行拟合。还给出了学习算法并进行了仿真实验 。 展开更多
关键词 模糊逻辑系统 最近邻聚类 输入-输出数据对 学习算法 精度
在线阅读 下载PDF
哈斯矩阵图的G-蛋白偶联受体类型预测
17
作者 肖绚 徐培杰 《计算机工程》 CAS CSCD 北大核心 2011年第18期204-205,208,共3页
利用氨基酸数字编码模型,将蛋白质序列转换为数字序列,根据偏序理论构建蛋白质哈斯矩阵。基于同一类型蛋白质哈斯矩阵图具有相似图像纹理的假设,运用图像处理方法提取图像的几何矩作为伪氨基酸成分,对G-蛋白偶联受体类型分为2层进行预测... 利用氨基酸数字编码模型,将蛋白质序列转换为数字序列,根据偏序理论构建蛋白质哈斯矩阵。基于同一类型蛋白质哈斯矩阵图具有相似图像纹理的假设,运用图像处理方法提取图像的几何矩作为伪氨基酸成分,对G-蛋白偶联受体类型分为2层进行预测,预测成功率分别为92.33%和85.48%。预测效果表明该方法是可行的。 展开更多
关键词 生物信息学 G-蛋白偶联受体 哈斯矩阵 模糊K近邻算法 Jackknife测试
在线阅读 下载PDF
一种新的模糊K邻域矢量量化码本设计算法
18
作者 张基宏 《电子科学学刊》 EI CSCD 1999年第1期50-54,共5页
本文提出了一种新的模糊K邻域矢量量化码本设计算法(FKNNVQ)。该算法具有对初始码本依赖性小,不会局部最小,收敛速度快,码本性能好等优点。实验结果表明,FKNNVQ算法与Karayannis等1995年提出的模糊矢量量化算法(FVQ)相比,设计的图象码... 本文提出了一种新的模糊K邻域矢量量化码本设计算法(FKNNVQ)。该算法具有对初始码本依赖性小,不会局部最小,收敛速度快,码本性能好等优点。实验结果表明,FKNNVQ算法与Karayannis等1995年提出的模糊矢量量化算法(FVQ)相比,设计的图象码本峰值信噪比和收敛速度都有明显改善。 展开更多
关键词 图象编码 模糊K邻域算法 模糊矢量量化
在线阅读 下载PDF
基于隶属度的模糊加权k近质心近邻算法 被引量:3
19
作者 刘利 张德生 肖燕婷 《计算机工程》 CAS CSCD 北大核心 2022年第7期122-129,共8页
模糊k近质心近邻算法(FKNCN)的分类结果易受噪声点和离群点影响,并且算法对所有样本特征同等对待,不能体现样本特征的差异性。针对这两个问题,提出基于隶属度的模糊加权k近质心近邻算法MRFKNCN。利用密度聚类思想构造新的隶属度函数计... 模糊k近质心近邻算法(FKNCN)的分类结果易受噪声点和离群点影响,并且算法对所有样本特征同等对待,不能体现样本特征的差异性。针对这两个问题,提出基于隶属度的模糊加权k近质心近邻算法MRFKNCN。利用密度聚类思想构造新的隶属度函数计算训练样本的隶属度,以减小噪声或离群样本对分类结果的影响。在此基础上,设计基于冗余分析的Relief-F算法计算每个特征的权重,删去较小权重所对应的特征和冗余特征,并通过加权欧氏距离选取有代表性的k个近质心近邻,提高分类性能。最终,根据最大隶属度原则确定待分类样本的类别。利用UCI和KEEL中的多个数据集对MRFKNCN算法进行测试,并与KNN、KNCN、LMKNCN、FKNN、FKNCN2和BMFKNCN算法进行比较。实验结果表明,MRFKNCN算法的分类性能明显优于其他6个对比算法,平均准确率最高可提升4.68个百分点。 展开更多
关键词 k近质心近邻算法 隶属度 冗余分析 特征选择 数据分类
在线阅读 下载PDF
模式识别技术在泥浆浓度反演中的应用 被引量:2
20
作者 李德军 吕艳华 王润田 《中国工程科学》 2007年第5期81-84,共4页
泥浆在建筑工程中使用非常普遍,合理地控制泥浆的物理性能对于建筑工程施工及其质量控制非常重要,通过声学方法可以有效地监测泥浆的体积浓度等物理参数。在通过声衰减和声速等介质的声学参数反演泥浆浓度的过程中,数据拟合的好坏直接... 泥浆在建筑工程中使用非常普遍,合理地控制泥浆的物理性能对于建筑工程施工及其质量控制非常重要,通过声学方法可以有效地监测泥浆的体积浓度等物理参数。在通过声衰减和声速等介质的声学参数反演泥浆浓度的过程中,数据拟合的好坏直接影响到反演的精确程度。通过模式识别技术,利用聚类算法,对数据进行分类、归类处理,能有效的地提高反演的准确度。 展开更多
关键词 模式识别 最近邻法 聚类算法 泥浆浓度
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部