期刊文献+
共找到1,335篇文章
< 1 2 67 >
每页显示 20 50 100
一种改进的 Fuzzy c-means 聚类算法 被引量:4
1
作者 胡钟山 丁震 +2 位作者 杨静宇 唐振民 邬永革 《南京理工大学学报》 EI CAS CSCD 1997年第4期337-340,共4页
该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且... 该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且MFCM较FCM有较低的时间复杂性,讨论了MFCM与FCM空间复杂性的关系。最后数值实验证实了结论。 展开更多
关键词 模糊聚类 模式识别 聚类分析 MFCM
在线阅读 下载PDF
基于K-means聚类及模糊判别的卷烟包灰性能综合评价方法 被引量:1
2
作者 楚文娟 郭丽霞 +5 位作者 程东旭 王红霞 崔廷 冯银龙 王建民 鲁平 《轻工学报》 CAS 北大核心 2024年第6期93-100,共8页
为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,... 为实现卷烟包灰性能的综合评价和评价结果具象化,以49个卷烟的灰色、裂口率、缩灰率、碳线宽度、碳线整齐度测定结果为原始变量,先运用K-means聚类、模糊判别法将原始变量转换为具象化的得分数据,再运用Critic赋权法赋予各项指标权重,建立了一种卷烟包灰性能综合评价方法。结果表明:将原始变量转换成区间为60~100、平均值在80左右的得分,可使评价结果具象化且更加符合认知习惯;5项指标的权重由高到低依次为裂口率(0.27)>缩灰率(0.25)>灰色(0.18)>碳线整齐度(0.16)>碳线宽度(0.14);卷烟包灰性能可划分为优、良、差三档,各档得分区间依次为(85,100]、[75,85]、[60,75);不同档次代表性卷烟的灰柱视觉效果对比结果证明,综合得分可客观反映卷烟包灰性能的优劣。 展开更多
关键词 卷烟 包灰性能 K-means聚类 模糊判别 Critic赋权法
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
3
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy C-means clustering.
在线阅读 下载PDF
Partition region-based suppressed fuzzy C-means algorithm 被引量:1
4
作者 Kun Zhang Weiren Kong +4 位作者 Peipei Liu Jiao Shi Yu Lei Jie Zou Min Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期996-1008,共13页
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o... Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases. 展开更多
关键词 shadowed set suppressed fuzzy C-means clustering automatically parameter selection soft computing techniques
在线阅读 下载PDF
基于属性权重的Fuzzy C Mean算法 被引量:46
5
作者 王丽娟 关守义 +1 位作者 王晓龙 王熙照 《计算机学报》 EI CSCD 北大核心 2006年第10期1797-1803,共7页
提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFC... 提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论. 展开更多
关键词 梯度递减算法 fuzzy C mean算法 属性权重学习算法 聚类有效性函数
在线阅读 下载PDF
基于模糊粒度计算的K-means文本聚类算法研究 被引量:12
6
作者 张霞 王素贞 +1 位作者 尹怡欣 赵海龙 《计算机科学》 CSCD 北大核心 2010年第2期209-211,共3页
传统的K-means算法对初始聚类中心非常敏感,聚类结果随不同的初始输入而波动,算法的稳定性下降。针对这个问题,提出了一种优化初始聚类中心的新算法:在数据对象的模糊粒度空间上给定一个归一化的距离函数,用此函数对所有距离小于粒度d_... 传统的K-means算法对初始聚类中心非常敏感,聚类结果随不同的初始输入而波动,算法的稳定性下降。针对这个问题,提出了一种优化初始聚类中心的新算法:在数据对象的模糊粒度空间上给定一个归一化的距离函数,用此函数对所有距离小于粒度d_λ的数据对象进行初始聚类,对初始聚类簇计算其中心,得到一组优化的聚类初始值。实验对比证明,新算法有效地消除了传统K-means算法对初始输入的敏感性,提高了算法的稳定性和准确率。 展开更多
关键词 模糊 粒度 K-means 文本聚类 归一化距离函数
在线阅读 下载PDF
基于模糊C-Means的改进型KNN分类算法 被引量:12
7
作者 朱付保 谢利杰 +1 位作者 汤萌萌 朱颢东 《华中师范大学学报(自然科学版)》 CAS 北大核心 2017年第6期754-759,共6页
KNN算法是一种思想简单且容易实现的分类算法,但在训练集较大以及特征属性较多时候,其效率低、时间开销大.针对这一问题,论文提出了基于模糊C-means的改进型KNN分类算法,该算法在传统的KNN分类算法基础上引入了模糊C-means理论,通过对... KNN算法是一种思想简单且容易实现的分类算法,但在训练集较大以及特征属性较多时候,其效率低、时间开销大.针对这一问题,论文提出了基于模糊C-means的改进型KNN分类算法,该算法在传统的KNN分类算法基础上引入了模糊C-means理论,通过对样本数据进行聚类处理,用形成的子簇代替该子簇所有的样本集,以减少训练集的数量,从而减少KNN分类过程的工作量、提高分类效率,使KNN算法更好地应用于数据挖掘.通过理论分析和实验结果表明,论文所提算法在面对较大数据时能有效提高算法的效率和精确性,满足处理数据的需求. 展开更多
关键词 模糊C—means 聚类 KNN分类
在线阅读 下载PDF
基于模糊K-harmonic means的谱聚类算法 被引量:7
8
作者 汪中 刘贵全 陈恩红 《智能系统学报》 2009年第2期95-99,共5页
谱聚类作为一种有效的方法广泛应用于机器学习.通过分析谱聚类初始化敏感的实质,引入对初值不敏感的模糊K-harmonic means算法来克服这一缺点,提出一种基于模糊K-harmonic means的谱聚类算法(FKHM-SC).与传统谱聚类算法以及对初值敏感的... 谱聚类作为一种有效的方法广泛应用于机器学习.通过分析谱聚类初始化敏感的实质,引入对初值不敏感的模糊K-harmonic means算法来克服这一缺点,提出一种基于模糊K-harmonic means的谱聚类算法(FKHM-SC).与传统谱聚类算法以及对初值敏感的K-means、FCM算法相比,改进算法不仅可以识别有挑战性的人工数据,并且可以得到稳定的聚类中心和聚类结果,同时提高了聚类的精确度.实验结果表明了该算法的有效性和可行性. 展开更多
关键词 谱聚类 模糊K-harmonic means 初始化敏感 聚类中心
在线阅读 下载PDF
模糊K-Harmonic Means聚类算法 被引量:6
9
作者 赵恒 杨万海 张高煜 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2005年第4期603-606,638,共5页
对K-HarmonicMeans算法进行扩展,考虑到数据点对不同类的隶属关系,将模糊的概念应用到聚类中,提出了模糊K-HarmonicMeans算法,推导出聚类中心和模糊隶属度的迭代公式.在中心迭代聚类算法统一框架的基础上,推导出FKHM算法聚类中心的条件... 对K-HarmonicMeans算法进行扩展,考虑到数据点对不同类的隶属关系,将模糊的概念应用到聚类中,提出了模糊K-HarmonicMeans算法,推导出聚类中心和模糊隶属度的迭代公式.在中心迭代聚类算法统一框架的基础上,推导出FKHM算法聚类中心的条件概率表达式以及在迭代过程中的数据加权函数表达式.最后,用Folkes&Mallows指标对聚类结果进行评价.实验表明,模糊K-HarmonicMeans(KHM)算法在聚类对于初值不敏感的同时提高了聚类结果的精确度,达到较好的聚类效果. 展开更多
关键词 模糊K—Harmonic means聚类 聚类中心 条件概率 Folkes & Mallows指标
在线阅读 下载PDF
基于k-means聚类和模糊神经网络的母线负荷态势感知 被引量:25
10
作者 蒋铁铮 尹晓博 +2 位作者 马瑞 杨海晶 李朝晖 《电力科学与技术学报》 CAS 北大核心 2020年第3期46-54,共9页
为顺应电力调度计划朝更精细化方向发展,提出基于k-means聚类和模糊神经网络的母线负荷态势感知方法。首先提出表征母线负荷状态参量和体现其状态参量变化趋势的母线负荷静动态势概念,然后建立母线负荷态势感知方法,包括:在态势觉察阶段... 为顺应电力调度计划朝更精细化方向发展,提出基于k-means聚类和模糊神经网络的母线负荷态势感知方法。首先提出表征母线负荷状态参量和体现其状态参量变化趋势的母线负荷静动态势概念,然后建立母线负荷态势感知方法,包括:在态势觉察阶段,对母线历史负荷态势信息进行采集和处理;在态势理解阶段,采用基于手肘法的k-means聚类算法对考虑母线环境因素和负荷因素的母线历史负荷态势信息进行聚类分析;在态势预测阶段,采用费歇尔判别分析针对待测日动态势信息进行分类预测匹配待测日所属历史数据聚类类别,将所属类别的历史静态势数据代入模糊神经网络预测模型,建立基于k-means聚类的模糊神经网络预测方法,对待感知日母线负荷进行态势预测。最后应用该文方法进行算例仿真,结果表明所提方法的有效性和可行性,同时与传统模糊神经网络预测相比,该文母线负荷态势感知方法具有更高的态势预测精度。 展开更多
关键词 母线负荷态势感知 手肘法 K-means聚类 费歇尔判别分析 模糊神经网络
在线阅读 下载PDF
基于大数据的改进模糊K-means算法 被引量:8
11
作者 全海金 何映思 《重庆理工大学学报(自然科学)》 CAS 北大核心 2018年第12期145-148,共4页
针对传统模糊K-means算法易于采用局部最优解的缺陷,设计了一种基于大数据K-means聚类算法的优化算法。首先针对移动大数据的分析处理方法展开研究,再提出了通过欧氏距离来选出密度最大若干个初始点的改进方法,使数据的聚类的有效性及... 针对传统模糊K-means算法易于采用局部最优解的缺陷,设计了一种基于大数据K-means聚类算法的优化算法。首先针对移动大数据的分析处理方法展开研究,再提出了通过欧氏距离来选出密度最大若干个初始点的改进方法,使数据的聚类的有效性及效率性有了很大的提高。实验仿真表明:该算法具有较好的聚类效果,提高了聚类的速度和准确性。 展开更多
关键词 大数据 模糊K-means算法 模糊聚类算法
在线阅读 下载PDF
基于粗糙集理论的模糊C-means高维数据聚类算法 被引量:2
12
作者 朱付保 徐显景 +1 位作者 白庆春 朱颢东 《华中师范大学学报(自然科学版)》 CAS 北大核心 2015年第4期511-514,537,共5页
模糊C-means算法是一种重要的聚类分析算法,但是在数据维数较高的情况下,该算法计算量急剧上升从而导致其效率较低.针对这一问题,提出了一种基于粗糙集理论的模糊C-means高维数据聚类算法,该算法在传统模糊C-means算法的基础上引入了粗... 模糊C-means算法是一种重要的聚类分析算法,但是在数据维数较高的情况下,该算法计算量急剧上升从而导致其效率较低.针对这一问题,提出了一种基于粗糙集理论的模糊C-means高维数据聚类算法,该算法在传统模糊C-means算法的基础上引入了粗糙集属性约简的理念,通过对数据集属性的约简,提取出对分类影响较大的属性集而摒弃与分类无关的属性,进而在聚类过程中只计算属性约简结果集中的属性,从而减少聚类过程的工作量、提高聚类效率.理论分析和实验结果表明,该算法在处理高维数据时较高效. 展开更多
关键词 粗糙集 模糊C均值 高维数据 聚类
在线阅读 下载PDF
基于模糊C-means的多视角聚类算法 被引量:2
13
作者 杨欣欣 黄少滨 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期2128-2133,共6页
目前多数多视角聚类算法属于"刚性"划分算法,不适用于处理具有聚簇重叠结构的数据集,为此,提出一种基于模糊C-means的多视角聚类算法(简称FCM-MVC),该算法利用隶属度描述对象与类别的关系,能够更真实地描述具有聚簇重叠结构... 目前多数多视角聚类算法属于"刚性"划分算法,不适用于处理具有聚簇重叠结构的数据集,为此,提出一种基于模糊C-means的多视角聚类算法(简称FCM-MVC),该算法利用隶属度描述对象与类别的关系,能够更真实地描述具有聚簇重叠结构数据集的聚类结果。FCM-MVC算法同时利用多个视角信息,自动计算每个视角的权重。研究结果表明:FCM-MVC算法能够有效处理具有聚簇重叠结构的数据集;与已有的3种经典的多视角聚类算法相比,该算法获得的聚类精度更高。 展开更多
关键词 多视角聚类 模糊C-means 数据挖掘
在线阅读 下载PDF
基于模糊C-means聚类的地球化学数据分析 被引量:1
14
作者 孟海东 管世明 徐贯东 《金属矿山》 CAS 北大核心 2012年第4期106-108,143,共4页
采用数据挖掘技术中模糊C-means聚类算法,以地球化学元素为数据对象、样品分析结果为属性值,对某已知金矿区和锡矿区岩石样品的元素组合特征进行了分析。聚类分析得出的元素组合关系与已知地质资料相一致,表明模糊C-means聚类算法能够... 采用数据挖掘技术中模糊C-means聚类算法,以地球化学元素为数据对象、样品分析结果为属性值,对某已知金矿区和锡矿区岩石样品的元素组合特征进行了分析。聚类分析得出的元素组合关系与已知地质资料相一致,表明模糊C-means聚类算法能够客观、有效地发现地球化学元素的组合特征。同时,对位于内蒙古地区某多金属成矿带的地球化学采样数据进行了分析,根据聚类结果推断该地区是寻找金、银多金属矿产资源的目标区域。 展开更多
关键词 数据挖掘 模糊C-means聚类 地球化学元素 元素组合特征
在线阅读 下载PDF
基于Hadoop二阶段并行模糊c-Means聚类算法
15
作者 胡吉朝 黄红艳 《计算机应用与软件》 CSCD 2016年第6期282-286,共5页
针对Mapreduce机制下算法通信时间占用比过高,实际应用价值受限的情况,提出基于Hadoop二阶段并行c-Means聚类算法用来解决超大数据的分类问题。首先,改进Mapreduce机制下的MPI通信管理方法,采用成员管理协议方式实现成员管理与Mapreduc... 针对Mapreduce机制下算法通信时间占用比过高,实际应用价值受限的情况,提出基于Hadoop二阶段并行c-Means聚类算法用来解决超大数据的分类问题。首先,改进Mapreduce机制下的MPI通信管理方法,采用成员管理协议方式实现成员管理与Mapreduce降低操作的同步化;其次,实行典型个体组降低操作代替全局个体降低操作,并定义二阶段缓冲算法;最后,通过第一阶段的缓冲进一步降低第二阶段Mapreduce操作的数据量,尽可能降低大数据带来的对算法负面影响。在此基础上,利用人造大数据测试集和KDD CUP 99入侵测试集进行仿真,实验结果表明,该算法既能保证聚类精度要求又可有效加快算法运行效率。 展开更多
关键词 二阶段 模糊c-means 大数据 聚类 并行 入侵检测
在线阅读 下载PDF
基于模糊K-Means聚类的光纤大数据分类平台设计 被引量:9
16
作者 农丽丽 钟琴 卢志翔 《激光杂志》 北大核心 2020年第8期139-144,共6页
光纤大数据分类容易出现稳定性差以及容易陷入局部最佳解问题,为了提高光纤大数据分类性能,设计基于模糊K-Means聚类的光纤大数据分类平台,平台数据采集器通过太网管制芯片CP2200和单片机C8051F340采集光纤大数据,并将数据传递给采用SO... 光纤大数据分类容易出现稳定性差以及容易陷入局部最佳解问题,为了提高光纤大数据分类性能,设计基于模糊K-Means聚类的光纤大数据分类平台,平台数据采集器通过太网管制芯片CP2200和单片机C8051F340采集光纤大数据,并将数据传递给采用SOA体系结构的服务端为大数据分类提供服务基础,服务端通过传输接口将光纤数据传递给逻辑处理端,逻辑处理端接收到光纤数据后,通过云计算获取网络光纤大数据特征类型,同时结合软件设计的基于Witten框架的改进模糊聚类算法流程,制定光纤大数据分类标准,实现待分类光纤大数据的有效分类。平台软件给出基于Witten框架的改进模糊聚类算法分类光纤大数据的详细过程,先对光纤数据属性实施特征选择同时实施稀疏聚类,再融入空间距离代替传统欧氏距离,固定权值向量,不断优化聚类中心,获取准确的光纤大数据分类结果。实验结果说明,采用该平台分类高维光纤大数据的平均F-Measure值和平均准确率值分别达到0.9733和0.9641,分类性能佳。 展开更多
关键词 模糊K-means聚类 光纤大数据 分类 数据采集器 服务端 逻辑处理端
在线阅读 下载PDF
基于方向性模糊C-means与K-means的混合矩阵估计方法
17
作者 黄宇扬 初萍 廖斌 《信号处理》 CSCD 北大核心 2021年第7期1295-1303,共9页
在信源数目未知的欠定盲源分离问题中,精确地估计混合矩阵是具有挑战性的问题。针对现有方法在病态条件下(某些混合向量的方向接近)不能准确估计信源数目、易受离群点干扰的不足,提出了一种基于方向性模糊C-means与K-means的混合矩阵估... 在信源数目未知的欠定盲源分离问题中,精确地估计混合矩阵是具有挑战性的问题。针对现有方法在病态条件下(某些混合向量的方向接近)不能准确估计信源数目、易受离群点干扰的不足,提出了一种基于方向性模糊C-means与K-means的混合矩阵估计方法。该方法首先通过方向性模糊C-means对观测信号进行预聚类,通过预聚类可以实现:1)根据聚类有效性指标值的收敛点确定信源数目;2)根据隶属度矩阵排除离群点;3)确定K-means的初始聚类点。最后使用K-means并利用预聚类确定的信源数目及初始聚类点实现混合矩阵估计。仿真结果表明提出的方法具有更优的混合矩阵估计性能。 展开更多
关键词 盲源分离 混合矩阵估计 聚类 方向性模糊C-means K-means
在线阅读 下载PDF
Instance reduction for supervised learning using input-output clustering method
18
作者 YODJAIPHET Anusorn THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4740-4748,共9页
A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d... A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process. 展开更多
关键词 instance reduction input-output clustering fuzzy c-means clustering support vector regression supervised learning
在线阅读 下载PDF
基于超像素的改进FCM电力设备红外图像分割
19
作者 吴晓君 余显喆 +2 位作者 王鹏 赵鹤 李天成 《红外技术》 北大核心 2025年第2期235-242,共8页
针对传统模糊C均值(FCM)算法在图像分割中存在分割精度低、收敛速度慢、对初始聚类中心选取不佳而陷入局部最优等问题,提出一种适用于电力设备红外图像的基于超像素的改进FCM分割方法。首先,采用多特征融合的简单非迭代聚类(SNIC)超像... 针对传统模糊C均值(FCM)算法在图像分割中存在分割精度低、收敛速度慢、对初始聚类中心选取不佳而陷入局部最优等问题,提出一种适用于电力设备红外图像的基于超像素的改进FCM分割方法。首先,采用多特征融合的简单非迭代聚类(SNIC)超像素算法对图像进行预分割,用超像素代替像素表达图像特征,降低后续处理复杂度;其次,运用最大类间方差的思想,选取类间方差最大时灰度直方图最大值对应的灰度值作为改进算法的初始聚类中心,避免生成局部最优解;最后,将多特征融合的SNIC算法与FCM算法结合,实现电力设备红外图像分割。实验结果表明:该算法在设备轮廓和局部高温区域的分割上改善了对比算法存在的欠分割现象,提升了运算效率,为后期电力设备故障诊断奠定基础。 展开更多
关键词 红外图像 模糊C均值聚类 超像素 初始聚类中心
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
20
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊C均值聚类 简单线性迭代聚类 K-means++算法
在线阅读 下载PDF
上一页 1 2 67 下一页 到第
使用帮助 返回顶部