期刊文献+
共找到326篇文章
< 1 2 17 >
每页显示 20 50 100
New two-dimensional fuzzy C-means clustering algorithm for image segmentation 被引量:4
1
作者 周鲜成 申群太 刘利枚 《Journal of Central South University of Technology》 EI 2008年第6期882-887,共6页
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this... To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation. 展开更多
关键词 image segmentation fuzzy c-means clustering particle swarm optimization two-dimensional histogram
在线阅读 下载PDF
Power interconnected system clustering with advanced fuzzy C-mean algorithm 被引量:6
2
作者 王洪梅 KIM Jae-Hyung +2 位作者 JUNG Dong-Yean LEE Sang-Min LEE Sang-Hyuk 《Journal of Central South University》 SCIE EI CAS 2011年第1期190-195,共6页
An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, m... An advanced fuzzy C-mean (FCM) algorithm was proposed for the efficient regional clustering of multi-nodes interconnected systems. Due to various locational prices and regional coherencies for each node and point, modified similarity measure was considered to gather nodes having similar characteristics. The similarity measure was needed to contain locafi0nal prices as well as regional coherency. In order to consider the two properties simultaneously, distance measure of fuzzy C-mean algorithm had to be modified. Regional clustering algorithm for interconnected power systems was designed based on the modified fuzzy C-mean algorithm. The proposed algorithm produces proper classification for the interconnected power system and the results are demonstrated in the example of IEEE 39-bus interconnected electricity system. 展开更多
关键词 fuzzy c-mean similarity measure distance measure interconnected system clustering
在线阅读 下载PDF
Refracturing candidate selection for MFHWs in tight oil and gas reservoirs using hybrid method with data analysis techniques and fuzzy clustering 被引量:5
3
作者 TAO Liang GUO Jian-chun +1 位作者 ZHAO Zhi-hong YIN Qi-wu 《Journal of Central South University》 SCIE EI CAS CSCD 2020年第1期277-287,共11页
The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of ... The selection of refracturing candidate is one of the most important jobs faced by oilfield engineers. However, due to the complicated multi-parameter relationships and their comprehensive influence, the selection of refracturing candidate is often very difficult. In this paper, a novel approach combining data analysis techniques and fuzzy clustering was proposed to select refracturing candidate. First, the analysis techniques were used to quantitatively calculate the weight coefficient and determine the key factors. Then, the idealized refracturing well was established by considering the main factors. Fuzzy clustering was applied to evaluate refracturing potential. Finally, reservoirs numerical simulation was used to further evaluate reservoirs energy and material basis of the optimum refracturing candidates. The hybrid method has been successfully applied to a tight oil reservoir in China. The average steady production was 15.8 t/d after refracturing treatment, increasing significantly compared with previous status. The research results can guide the development of tight oil and gas reservoirs effectively. 展开更多
关键词 tight oil and gas reservoirs idealized refracturing well fuzzy clustering refracturing potential hybrid method
在线阅读 下载PDF
Kernel method-based fuzzy clustering algorithm 被引量:2
4
作者 WuZhongdong GaoXinbo +1 位作者 XieWeixin YuJianping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第1期160-166,共7页
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d... The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis. 展开更多
关键词 fuzzy clustering analysis kernel method fuzzy c-means clustering.
在线阅读 下载PDF
Partition region-based suppressed fuzzy C-means algorithm 被引量:1
5
作者 Kun Zhang Weiren Kong +4 位作者 Peipei Liu Jiao Shi Yu Lei Jie Zou Min Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第5期996-1008,共13页
Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the o... Aimed at the problem that the traditional suppressed fuzzy C-means clustering algorithms ignore the real needs of different objects, applying the same suppressed parameter for modifying membership degrees of all the objects, a novel partition region-based suppressed fuzzy C-means clustering algorithm with better capacity of adaptability and robustness is proposed in this paper. The model based on the real needs of different objects is built, making it clear to decide whether to proceed with further determination; in addition, the external user-defined suppressed parameter is automatically selected according to the intrinsic structural characteristic of each dataset, making the proposed method become robust to the fluctuations in the incoming dataset and initial conditions. Experimental results show that the proposed method is more robust than its counterparts and overcomes the weakness of the original suppressed clustering algorithm in most cases. 展开更多
关键词 shadowed set suppressed fuzzy c-means clustering automatically parameter selection soft computing techniques
在线阅读 下载PDF
Instance reduction for supervised learning using input-output clustering method
6
作者 YODJAIPHET Anusorn THEERA-UMPON Nipon AUEPHANWIRIYAKUL Sansanee 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第12期4740-4748,共9页
A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input d... A method that applies clustering technique to reduce the number of samples of large data sets using input-output clustering is proposed.The proposed method clusters the output data into groups and clusters the input data in accordance with the groups of output data.Then,a set of prototypes are selected from the clustered input data.The inessential data can be ultimately discarded from the data set.The proposed method can reduce the effect from outliers because only the prototypes are used.This method is applied to reduce the data set in regression problems.Two standard synthetic data sets and three standard real-world data sets are used for evaluation.The root-mean-square errors are compared from support vector regression models trained with the original data sets and the corresponding instance-reduced data sets.From the experiments,the proposed method provides good results on the reduction and the reconstruction of the standard synthetic and real-world data sets.The numbers of instances of the synthetic data sets are decreased by 25%-69%.The reduction rates for the real-world data sets of the automobile miles per gallon and the 1990 census in CA are 46% and 57%,respectively.The reduction rate of 96% is very good for the electrocardiogram(ECG) data set because of the redundant and periodic nature of ECG signals.For all of the data sets,the regression results are similar to those from the corresponding original data sets.Therefore,the regression performance of the proposed method is good while only a fraction of the data is needed in the training process. 展开更多
关键词 instance reduction input-output clustering fuzzy c-means clustering support vector regression supervised learning
在线阅读 下载PDF
高山峡谷地区隧道洞口适宜性评价与应用研究 被引量:1
7
作者 刘伟 许广春 +1 位作者 石崎材 宋树宝 《铁道工程学报》 北大核心 2025年第3期60-64,74,共6页
研究目的:青藏高原高山峡谷地区隧道洞口选址面临着极为复杂的地质和环境挑战,需规避不良地质灾害和洪水位,选择围岩稳定的位置,并考虑施工难度,以降低工程风险及成本。本文基于现场地质勘察、无人机测绘等综合勘察技术,结合模糊综合评... 研究目的:青藏高原高山峡谷地区隧道洞口选址面临着极为复杂的地质和环境挑战,需规避不良地质灾害和洪水位,选择围岩稳定的位置,并考虑施工难度,以降低工程风险及成本。本文基于现场地质勘察、无人机测绘等综合勘察技术,结合模糊综合评判法和修正灰色聚类分析法构建隧道洞口选址综合评价方法,利用量化评价方法为隧道洞口的选址提供科学依据。研究结论:(1)考虑岩性、坡度、坡面走向、高程、与山脊线距离、仰坡危岩体规模、与断层距离、与现有公路距离、与对岸相应位置间最短距离9个指标建立评价体系;(2)结合现场地质勘察、专家系统和洞口适宜性定量评价建立隧道洞口选址综合评价方法;(3)相较于单一方法,综合考虑模糊综合评判法和修正灰色聚类分析法的隧道洞口选址评价方法更能反映实际工程特征,提出切实可行的洞口选址建议;(4)本研究成果可应用于山区公路隧道建设。 展开更多
关键词 隧道洞口选址 适宜性评价 模糊综合评判法 修正灰色聚类分析法
在线阅读 下载PDF
面向定性与定量指标的轻量化高空飞艇效能评估方法 被引量:1
8
作者 袁彰求 杨朝旭 荣海军 《系统工程与电子技术》 北大核心 2025年第3期817-826,共10页
高空飞艇具有驻空时间长、能源消耗低等优点,在面对信息监测和长期通信方面有很高的应用价值。综合考虑飞艇平台与载荷在指标上的耦合关系,提出一种面向定性与定量指标的轻量化高空飞艇效能评估方法。首先,运用模糊综合评估法将无法直... 高空飞艇具有驻空时间长、能源消耗低等优点,在面对信息监测和长期通信方面有很高的应用价值。综合考虑飞艇平台与载荷在指标上的耦合关系,提出一种面向定性与定量指标的轻量化高空飞艇效能评估方法。首先,运用模糊综合评估法将无法直接用于数据分析的定性指标转化为定量指标,实现多类型指标的完全量化。其次,通过基于模糊C均值聚类的最大信息系数相关性分析选择与关注指标相关的指标,构建轻量评估体系。再次,提出专家排序评价的主客观组合赋权法,基于轻量评估体系计算权重获得效能评估结果。最后,通过实例验证所提效能评估方法的有效性。所提出的轻量化高空飞艇效能评估方法可为高空飞艇的设计和优化提供数据支持,缩短研发周期、降低经济成本。 展开更多
关键词 效能评估 模糊综合评估法 模糊C均值聚类 最大信息系数 组合赋权法
在线阅读 下载PDF
基于轻量胶囊网络的自监督图像变化检测方法
9
作者 张益天 罗喜伶 王宇鹏 《北京航空航天大学学报》 北大核心 2025年第5期1705-1715,共11页
针对散斑噪声对合成孔径雷达(SAR)图像变化检测精度影响大、现有基于胶囊网络的图像变化检测方法网络模型复杂度高、训练样本丢失大量原始图像信息等问题,提出了一种基于轻量胶囊网络的自监督图像变化检测方法。生成对数比值算子差异图... 针对散斑噪声对合成孔径雷达(SAR)图像变化检测精度影响大、现有基于胶囊网络的图像变化检测方法网络模型复杂度高、训练样本丢失大量原始图像信息等问题,提出了一种基于轻量胶囊网络的自监督图像变化检测方法。生成对数比值算子差异图,通过最大类间方差法和模糊C均值聚类算法,获得高置信度的训练样本“伪标签”,为实现自监督学习奠定基础;构造基于两时相SAR图像和对数比值算子差异图的三通道训练样本,最大限度保留样本信息;设计轻量胶囊网络,通过单尺度卷积提取训练样本特征,采用单尺度胶囊网络挖掘特征之间的空间关系;设置对比实验和消融实验,在5个真实SAR数据集上进行测试。实验结果表明:所提方法在降低模型复杂度的条件下,提高了运行效率,获得了更强的鲁棒性特征,抑制了散斑噪声对变化检测效果的不利影响,提升了变化检测效果。 展开更多
关键词 变化检测 胶囊网络 最大类间方差法 模糊C均值聚类法 自监督学习
在线阅读 下载PDF
基于Fuzzy-AHP的采矿方法优选辅助系统开发与应用 被引量:3
10
作者 王卫华 戴怡文 +2 位作者 李坤 唐修 刘田 《黄金科学技术》 CSCD 2018年第3期312-317,共6页
采矿方法选择是矿山生产设计中的重要环节,如何便捷地优选采矿方法是矿山设计人员一直关心的问题。将采矿方法优选视为一个多目标模糊优化问题,运用模糊综合理论与层次分析法,建立了采矿方法优选的Fuzzy-AHP模型。然后,运用VB编程,开发... 采矿方法选择是矿山生产设计中的重要环节,如何便捷地优选采矿方法是矿山设计人员一直关心的问题。将采矿方法优选视为一个多目标模糊优化问题,运用模糊综合理论与层次分析法,建立了采矿方法优选的Fuzzy-AHP模型。然后,运用VB编程,开发了一套具有数据存储功能、运算便捷、操作简单和可视化程度高的计算机辅助优选系统。最后应用该系统对某硫铁矿采矿方法进行了优选,取得了良好的工程效果。实践表明,该系统为矿山采矿方法优选提供了一套可靠性高的辅助决策工具。 展开更多
关键词 采矿方法优选 fuzzy-AHP模型 计算机辅助系统 MVC框架 模糊聚类
在线阅读 下载PDF
FUZZY ISODATA聚类法在地下水水化学分类中的应用 被引量:2
11
作者 王文科 吴在宝 《西安地质学院学报》 1991年第3期59-66,共8页
本文以杜热草场水化学资料为例,运用FUZZY ISODATA聚类方法对地下水水化学类型的划分进行了初步研究,并与传统的舒卡列夫法和基于模糊关系聚类法所得结果进行了对比,说明了本方法的可靠性。文中运用该法对研究区水化学成份划分的五种类... 本文以杜热草场水化学资料为例,运用FUZZY ISODATA聚类方法对地下水水化学类型的划分进行了初步研究,并与传统的舒卡列夫法和基于模糊关系聚类法所得结果进行了对比,说明了本方法的可靠性。文中运用该法对研究区水化学成份划分的五种类型,基本符合本区地下水化学成份形成与分布规律,分类合理,计算简便,特别是对水化学成份差别不大的地区更为适用。 展开更多
关键词 地下水 水化学 分类 聚类分析
在线阅读 下载PDF
基于Neuro-Fuzzy方法的Web服务器访问流量预测
12
作者 周咏梅 阳爱民 《计算机工程》 CAS CSCD 北大核心 2004年第5期77-80,共4页
Neuro-Fuzzy方法是将神经网络和模糊逻辑进行有机的结合,用于解决复杂的非线性问题;用它来进行Web服务器流量预测,是一种新的思路和方法。该文介绍了模型构造的基本思想、结构、算法,也介绍了进化式聚类方法和预测过程;同时,给出... Neuro-Fuzzy方法是将神经网络和模糊逻辑进行有机的结合,用于解决复杂的非线性问题;用它来进行Web服务器流量预测,是一种新的思路和方法。该文介绍了模型构造的基本思想、结构、算法,也介绍了进化式聚类方法和预测过程;同时,给出了实验数据及分析。 展开更多
关键词 Neuro-fuzzy方法 Web流量预测 进化式聚类方法
在线阅读 下载PDF
基于多维分析的盛泉煤矿砂岩水的研究与应用
13
作者 施龙青 李欣阳 张军伟 《环境科学与技术》 北大核心 2025年第S1期98-109,共12页
文章针对开采盛泉煤矿造成水环境破坏、生活用水污染及生产污水逐渐向深部含水层扩散的问题,系统采集了新泰市盛泉井田砂岩水水样,以盛泉井田砂岩水的12个样本为研究依据。选取TDS、总硬度、pH值、Ca^(2+)、Mg^(2+)、Fe^(3+)、NH_(4)^(+... 文章针对开采盛泉煤矿造成水环境破坏、生活用水污染及生产污水逐渐向深部含水层扩散的问题,系统采集了新泰市盛泉井田砂岩水水样,以盛泉井田砂岩水的12个样本为研究依据。选取TDS、总硬度、pH值、Ca^(2+)、Mg^(2+)、Fe^(3+)、NH_(4)^(+)、Cl^(-)、SO_(4)^(2-)、HCO_(3)^(-)及K^(+)+Na^(+)共11种水化学成分指标进行水质评价。在通过Paper三线图、离子比例分析法揭示水化学成因及砂岩水形成机制的基础上,运用传统内梅罗指数法、改进内梅罗指数法、灰色聚类法和基于AHP-EWM计算权重的模糊综合评价法进行水质评价,并分别对其评价结果进行比较。结果表明:盛泉井田区域的砂岩水水样呈现弱酸、弱碱性,阴离子中SO_(4)^(2-)最高,阳离子中K^(+)+Na^(+)含量最高,水化学类型以HCO_(3)·SO_(4)-(K+Na)型、HCO_(3)·SO_(4)-(K+Na)·Mg·Ca型为主,砂岩水中离子源于盐岩和硅酸盐风化溶解,脱硫酸作用较弱,阳离子交换吸附作用较强,且水质明显分为两类,类别一均为Ⅰ类水,适用于生活用水,相比灰色聚类法,模糊综合评价方法适用性较好。研究结果可为满足生活用水及工业用水安全提供有益参考,同时为当地水资源管理与水环境保护提供有力支撑,实现对地下水的合理开发利用。 展开更多
关键词 水质评价 水化学特征 内梅罗指数法 灰色聚类法 模糊综合评价法
在线阅读 下载PDF
基于统计聚类的综合能源系统基础单元模型
14
作者 沈赋 杨志文 +3 位作者 徐潇源 张微 王哲 曹旸 《上海交通大学学报》 北大核心 2025年第9期1348-1358,I0006-I0009,共15页
综合能源系统中的设备元件构成复杂,涉及电、气、热、冷多种能源形式的设备元件在互联和传送过程中产生海量的异构数据,无法较好地反映综合能源系统特性.鉴于此,以综合能源系统基础单元为研究基础,首先,基于统计聚类法分析精选出综合能... 综合能源系统中的设备元件构成复杂,涉及电、气、热、冷多种能源形式的设备元件在互联和传送过程中产生海量的异构数据,无法较好地反映综合能源系统特性.鉴于此,以综合能源系统基础单元为研究基础,首先,基于统计聚类法分析精选出综合能源系统典型基础单元设备,提取综合能源系统典型基础单元设备特征数据表征基础单元特性;然后,根据综合能源系统基础单元的能质属性,建立综合能源系统各类基础单元模型,更全面地表征综合能源系统特性.最后,通过算例分析验证了所提各类综合能源系统基础单元模型的合理性和适用性. 展开更多
关键词 综合能源系统 基础单元 统计综合法 模糊聚类 负荷建模
在线阅读 下载PDF
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
15
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy c-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
在线阅读 下载PDF
Fuzzy identification of nonlinear dynamic system based on selection of important input variables 被引量:1
16
作者 LYU Jinfeng LIU Fucai REN Yaxue 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第3期737-747,共11页
Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structur... Input variables selection(IVS) is proved to be pivotal in nonlinear dynamic system modeling. In order to optimize the model of the nonlinear dynamic system, a fuzzy modeling method for determining the premise structure by selecting important inputs of the system is studied. Firstly, a simplified two stage fuzzy curves method is proposed, which is employed to sort all possible inputs by their relevance with outputs, select the important input variables of the system and identify the structure.Secondly, in order to reduce the complexity of the model, the standard fuzzy c-means clustering algorithm and the recursive least squares algorithm are used to identify the premise parameters and conclusion parameters, respectively. Then, the effectiveness of IVS is verified by two well-known issues. Finally, the proposed identification method is applied to a realistic variable load pneumatic system. The simulation experiments indi cate that the IVS method in this paper has a positive influence on the approximation performance of the Takagi-Sugeno(T-S) fuzzy modeling. 展开更多
关键词 Takagi-Sugeno(T-S)fuzzy modeling input variable selection(IVS) fuzzy identification fuzzy c-means clustering algorithm
在线阅读 下载PDF
A new measuring method for maximal length, width and thickness dimensions of coarse aggregates
17
作者 段跃华 张肖宁 吴传海 《Journal of Central South University》 SCIE EI CAS 2011年第6期2150-2156,共7页
In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and ... In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement. 展开更多
关键词 coarse aggregate flat and elongated (F&E) aggregate X-ray CT digital image processing fuzzy c-means clustering overlap area method spherical harmonics
在线阅读 下载PDF
IFCEM based recognition method for target with interval-overlapped hybrid attributes
18
作者 GUAN Xin LI Shuangming +1 位作者 SUN Guidong WANG Haibin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第2期408-421,共14页
When the attributes of unknown targets are not just numerical attributes,but hybrid attributes containing linguistic attributes,the existing recognition methods are not effective.In addition,it is more difficult to id... When the attributes of unknown targets are not just numerical attributes,but hybrid attributes containing linguistic attributes,the existing recognition methods are not effective.In addition,it is more difficult to identify the unknown targets densely distributed in the feature space,especially when there is interval overlap between attribute measurements of different target classes.To address these problems,a novel method based on intuitionistic fuzzy comprehensive evaluation model(IFCEM)is proposed.For numerical attributes,targets in the database are divided into individual classes and overlapping classes,and for linguistic attributes,continuous interval-valued linguistic term set(CIVLTS)is used to describe target characteristic.A cloud modelbased method and an area-based method are proposed to obtain intuitionistic fuzzy decision information of query target on numerical attributes and linguistic attributes respectively.An improved inverse weighted kernel fuzzy c-means(IWK-FCM)algorithm is proposed for solution of attribute weight vector.The possibility matrix is applied to determine the identity and category of query target.Finally,a case study composed of parameter sensitivity analysis,recognition accuracy analysis.and comparison with other methods,is taken to verify the superiority of the proposed method. 展开更多
关键词 intuitionistic fuzzy comprehensive evaluation model(IFCEM) interval overlapping cloud model area-based method inverse weighted kernel fuzzy c-means(IWK-FCM)
在线阅读 下载PDF
基于组合赋权的地铁渗漏模糊综合评价体系及应用
19
作者 张明聚 项扬 +2 位作者 李鹏飞 何海健 徐晴 《隧道建设(中英文)》 CSCD 北大核心 2024年第S2期62-73,共12页
为解决目前渗漏病害统计缺乏统一标准、统计结果难以量化的问题,通过层次分析法,建立地铁既有线车站及隧道区间的渗漏病害评价体系。基于实测数据及相关规范,划分出各病害分级评价标准。通过采用综合层次分析法、序关系分析法、熵权法和... 为解决目前渗漏病害统计缺乏统一标准、统计结果难以量化的问题,通过层次分析法,建立地铁既有线车站及隧道区间的渗漏病害评价体系。基于实测数据及相关规范,划分出各病害分级评价标准。通过采用综合层次分析法、序关系分析法、熵权法和CRITIC法的组合赋权法计算评价指标的权重,经计算可得渗漏级别为最主要权重。建立模糊综合评价体系实现对各类型渗漏病害的评价,为实际工程渗漏治理方案提供参考。通过系统聚类法实现对渗漏车站及区间的分级,为病害治理的优先级提供参考。最后通过工程实例对本研究进行验证,证明该评价体系具有应用价值。 展开更多
关键词 地铁渗漏水 组合赋权 模糊综合评价 系统聚类法
在线阅读 下载PDF
分布式模糊聚类微动法铁路路基岩溶地球物理探测:以皖赣铁路宁国改线工程为例 被引量:4
20
作者 王其合 苏本玉 王国林 《科学技术与工程》 北大核心 2024年第3期924-932,共9页
微动勘探法可探查铁路路基地下岩溶、裂隙通道等不良地质体的发育位置,针对反演成果中土、岩体分界面模糊不清,异常位置及边界不准确等问题,采用分布式模糊聚类算法分析反演数据。系统回顾了微动勘探法和分布式模糊聚类算法基本原理,以... 微动勘探法可探查铁路路基地下岩溶、裂隙通道等不良地质体的发育位置,针对反演成果中土、岩体分界面模糊不清,异常位置及边界不准确等问题,采用分布式模糊聚类算法分析反演数据。系统回顾了微动勘探法和分布式模糊聚类算法基本原理,以皖赣铁路宁国改线某区间既有铁路路基岩溶勘察为例,开展分布式模糊聚类微动勘探进行地层分层、溶洞自动划分。将分布式模糊聚类法分析前后的反演数据同时与钻探揭露结果对比发现,分布式模糊聚类算法可对分界面、异常区域进行自动有效划定,可更加准确地识别地质异常体。说明该方法可较大程度提高微动反演数据的准确率,为铁路路基工程的设计和施工提供参考。 展开更多
关键词 铁路路基 岩溶 物探 微动勘探法 分布式模糊聚类
在线阅读 下载PDF
上一页 1 2 17 下一页 到第
使用帮助 返回顶部