Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI s...Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation.展开更多
The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, d...The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.展开更多
When the attributes of unknown targets are not just numerical attributes,but hybrid attributes containing linguistic attributes,the existing recognition methods are not effective.In addition,it is more difficult to id...When the attributes of unknown targets are not just numerical attributes,but hybrid attributes containing linguistic attributes,the existing recognition methods are not effective.In addition,it is more difficult to identify the unknown targets densely distributed in the feature space,especially when there is interval overlap between attribute measurements of different target classes.To address these problems,a novel method based on intuitionistic fuzzy comprehensive evaluation model(IFCEM)is proposed.For numerical attributes,targets in the database are divided into individual classes and overlapping classes,and for linguistic attributes,continuous interval-valued linguistic term set(CIVLTS)is used to describe target characteristic.A cloud modelbased method and an area-based method are proposed to obtain intuitionistic fuzzy decision information of query target on numerical attributes and linguistic attributes respectively.An improved inverse weighted kernel fuzzy c-means(IWK-FCM)algorithm is proposed for solution of attribute weight vector.The possibility matrix is applied to determine the identity and category of query target.Finally,a case study composed of parameter sensitivity analysis,recognition accuracy analysis.and comparison with other methods,is taken to verify the superiority of the proposed method.展开更多
In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and ...In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement.展开更多
针对目前火车死钩检测无法自动实现的问题,提出了一种自然环境下基于颜色聚类和颜色距离的死钩检测方法。根据死钩和车厢颜色的对应关系,使用CCD(charge-coupled device)相机获取现场车厢图像并提取前景区域和背景区域的颜色特征,通过...针对目前火车死钩检测无法自动实现的问题,提出了一种自然环境下基于颜色聚类和颜色距离的死钩检测方法。根据死钩和车厢颜色的对应关系,使用CCD(charge-coupled device)相机获取现场车厢图像并提取前景区域和背景区域的颜色特征,通过分析该颜色信息的差异来判断车厢之间的连接是否为死钩。首先获取特定区域的颜色信息,然后采用FCM(fuzzy C-mean)聚类算法对颜色信息进行分类得到该区域的单一颜色特征,最后根据HLC(hue,lightness,hromatic)颜色空间和人类颜色视觉的相似关系,计算颜色特征对的NBS(national bureau of standards)颜色距离。利用翻车作业现场火车车厢图像进行检测,实验结果验证了该方法具有对颜色差异的高敏感性和识别的准确性,可以满足实际死钩检测的需要。展开更多
基金supported by the National Natural Science Foundation of China(6167138461703338)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2016JM6018)the Project of Science and Technology Foundationthe Fundamental Research Funds for the Central Universities(3102017OQD020)
文摘Dempster-Shafer evidence theory(DS theory) is widely used in brain magnetic resonance imaging(MRI) segmentation,due to its efficient combination of the evidence from different sources. In this paper, an improved MRI segmentation method,which is based on fuzzy c-means(FCM) and DS theory, is proposed. Firstly, the average fusion method is used to reduce the uncertainty and the conflict information in the pictures. Then, the neighborhood information and the different influences of spatial location of neighborhood pixels are taken into consideration to handle the spatial information. Finally, the segmentation and the sensor data fusion are achieved by using the DS theory. The simulated images and the MRI images illustrate that our proposed method is more effective in image segmentation.
文摘The fuzzy C-means clustering algorithm(FCM) to the fuzzy kernel C-means clustering algorithm(FKCM) to effectively perform cluster analysis on the diversiform structures are extended, such as non-hyperspherical data, data with noise, data with mixture of heterogeneous cluster prototypes, asymmetric data, etc. Based on the Mercer kernel, FKCM clustering algorithm is derived from FCM algorithm united with kernel method. The results of experiments with the synthetic and real data show that the FKCM clustering algorithm is universality and can effectively unsupervised analyze datasets with variform structures in contrast to FCM algorithm. It is can be imagined that kernel-based clustering algorithm is one of important research direction of fuzzy clustering analysis.
基金supported by the Youth Foundation of the National Science Foundation of China(62001503)the Excellent Youth Scholar of the National Defense Science and Technology Foundation of China(2017-JCJQ-ZQ-003)the Special Fund for Taishan Scholar Project(ts201712072).
文摘When the attributes of unknown targets are not just numerical attributes,but hybrid attributes containing linguistic attributes,the existing recognition methods are not effective.In addition,it is more difficult to identify the unknown targets densely distributed in the feature space,especially when there is interval overlap between attribute measurements of different target classes.To address these problems,a novel method based on intuitionistic fuzzy comprehensive evaluation model(IFCEM)is proposed.For numerical attributes,targets in the database are divided into individual classes and overlapping classes,and for linguistic attributes,continuous interval-valued linguistic term set(CIVLTS)is used to describe target characteristic.A cloud modelbased method and an area-based method are proposed to obtain intuitionistic fuzzy decision information of query target on numerical attributes and linguistic attributes respectively.An improved inverse weighted kernel fuzzy c-means(IWK-FCM)algorithm is proposed for solution of attribute weight vector.The possibility matrix is applied to determine the identity and category of query target.Finally,a case study composed of parameter sensitivity analysis,recognition accuracy analysis.and comparison with other methods,is taken to verify the superiority of the proposed method.
基金Project(51038004) supported by the National Natural Science Foundation of ChinaProject(2009318000078) supported by the Western China Communications Construction and Technology Program, China
文摘In order to establish a new method for measuring the dimensions of coarse aggregates, five different-size flat and elongated (F&E) coarse aggregates were glued into two specimens by epoxy resin, respectively, and slice images were obtained by X-ray CT, then the aggregates were extracted by the fuzzy c-means clustering algorithm. Attributions of the particle on different cross-sections were determined by the ‘overlap area method’. And unified three-dimensional Cartesian coordinate system was established based on continuous slice images. The coefficient values of spherical harmonics descriptor representing particles surface profile were gained, then each scanned particle was represented by 60×120 discrete points conformably with spherical harmonics descriptor. The chord length and direction angles were determined by the calculation. With the major axis (L) and orthogonal axis (W and T), the calculated results were compared with those measured by caliper. It is concluded that the new L, W, and T dimension measuring method is able to take the place of the present manual measurement.
文摘针对目前火车死钩检测无法自动实现的问题,提出了一种自然环境下基于颜色聚类和颜色距离的死钩检测方法。根据死钩和车厢颜色的对应关系,使用CCD(charge-coupled device)相机获取现场车厢图像并提取前景区域和背景区域的颜色特征,通过分析该颜色信息的差异来判断车厢之间的连接是否为死钩。首先获取特定区域的颜色信息,然后采用FCM(fuzzy C-mean)聚类算法对颜色信息进行分类得到该区域的单一颜色特征,最后根据HLC(hue,lightness,hromatic)颜色空间和人类颜色视觉的相似关系,计算颜色特征对的NBS(national bureau of standards)颜色距离。利用翻车作业现场火车车厢图像进行检测,实验结果验证了该方法具有对颜色差异的高敏感性和识别的准确性,可以满足实际死钩检测的需要。