期刊文献+
共找到580篇文章
< 1 2 29 >
每页显示 20 50 100
一种改进的 Fuzzy c-means 聚类算法 被引量:4
1
作者 胡钟山 丁震 +2 位作者 杨静宇 唐振民 邬永革 《南京理工大学学报》 EI CAS CSCD 1997年第4期337-340,共4页
该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且... 该文提出了一种改进的fuzzyc-means算法(MFCM)。此算法是将传统算法(FCM)直接对样本集聚类变为对特征集聚类,从而极大提高了fuzzyc-means的速度。证明了MFCM与FCM在分类效果上的等价性,且MFCM较FCM有较低的时间复杂性,讨论了MFCM与FCM空间复杂性的关系。最后数值实验证实了结论。 展开更多
关键词 模糊聚类 模式识别 聚类分析 MFcM
在线阅读 下载PDF
Fuzzy C-Means算法中隶属度信息在特征空间的分布特性分析及改进方法 被引量:2
2
作者 胡世英 周源华 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 1999年第1期67-72,共6页
首先推导了FuzzyC-Means算法在特征空间的迭代公式,然后就其隶属度信息在特征空间的分布缺陷提出两种改进方法:一是通过引入选择注意性参数控制隶属度信息的分布;二是从条件概率出发构造类置信度取代原隶属度.实验表明... 首先推导了FuzzyC-Means算法在特征空间的迭代公式,然后就其隶属度信息在特征空间的分布缺陷提出两种改进方法:一是通过引入选择注意性参数控制隶属度信息的分布;二是从条件概率出发构造类置信度取代原隶属度.实验表明这两种方法均起到了较好的效果. 展开更多
关键词 fuzzy 隶属度 选择注意性参数 置信度 FcM算法
在线阅读 下载PDF
基于VMD和FCM聚类算法的海上风机支撑结构损伤识别方法
3
作者 任义建 刁延松 +1 位作者 吕建达 侯敬儒 《振动与冲击》 北大核心 2025年第8期184-191,286,共9页
利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzz... 利用响应和有监督学习算法对运行状态下海上风机支撑结构进行损伤识别时,会遇到响应中能量占比很高的谐波成分影响和有监督学习算法需人工定义标签等问题。为此,利用变分模态分解(variational modal decomposition,VMD)和模糊C均值(fuzzy C-means,FCM)聚类算法进行海上风机支撑结构损伤识别。为剔除响应中的谐波成分,首先利用VMD对加速度响应进行分解,选取结构模态响应(仅含有结构自振频率)作为分析信号。然后计算模态响应的时域、能量和能量比值及样本熵特征构造特征矩阵,利用主成分分析对特征矩阵进行降维,得到损伤特征矩阵。将损伤特征矩阵输入FCM聚类算法,通过聚类分析得到结构的损伤状态。位移激励下海上风机支撑结构损伤识别模型试验数据验证了该方法的有效性。该方法属于无监督学习算法,无需标注标签且不受谐波成分的影响。 展开更多
关键词 海上风机支撑结构 损伤识别 变分模态分解(VMD) 模糊c均值(FcM)聚类算法 无监督学习算法
在线阅读 下载PDF
联合RGB属性融合与FCM聚类算法的浅海浊积砂体精细表征——以莺歌海盆地X气田为例
4
作者 赵兴 李磊 +5 位作者 薛国庆 张忠坡 袁晓婷 柴亚伟 杨潘 徐勇 《海洋地质前沿》 北大核心 2025年第8期40-54,共15页
浅海浊流沉积体系控制下X气田浊积砂体沉积特征复杂、空间展布不清,制约着油气资源的开发。基于测井、岩芯、三维地震等资料,联合分频RGB属性融合技术与FCM聚类算法开展浊积砂体精细表征,取得以下3点认识:①研究区浊积砂体表现出强振幅... 浅海浊流沉积体系控制下X气田浊积砂体沉积特征复杂、空间展布不清,制约着油气资源的开发。基于测井、岩芯、三维地震等资料,联合分频RGB属性融合技术与FCM聚类算法开展浊积砂体精细表征,取得以下3点认识:①研究区浊积砂体表现出强振幅高连续性的地震反射特征,15、35、55 Hz分频地震属性切片的RGB融合效果与浊积砂体的空间展布响应程度最佳,砂体预测厚度与实际钻遇砂体厚度较为吻合,相关系数R^(2)约为0.94;②FCM算法能够完成优选地震属性的有效聚类,依据5个聚类组的平面特征,初步划分出3类浊积砂体;③研究区泥质沉积背景上发育带状侧积体、环状侧积体、水道堤岸、水道-分支水道、近端朵体、远端朵体6类沉积单元,预测环状、带状侧积体、远端朵体为有利砂体。 展开更多
关键词 浅海浊流 浊积砂体 RGB属性融合 FcM算法 聚类分析
在线阅读 下载PDF
基于属性权重的Fuzzy C Mean算法 被引量:46
5
作者 王丽娟 关守义 +1 位作者 王晓龙 王熙照 《计算机学报》 EI CSCD 北大核心 2006年第10期1797-1803,共7页
提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFC... 提出CF-WFCM算法,该算法分为属性权重学习算法和聚类算法两部分.属性权重学习算法,从数据自身的相似性出发,通过梯度递减算法极小化属性评价函数CFuzziness(w),为每个属性赋予一个权重.将属性权重应用于Fuzzy C Mean聚类算法,得到CF-WFCM算法的聚类算法.CF-WFCM算法强化重要属性在聚类过程中的作用,消减冗余属性的作用,从而改善聚类的效果.我们选取了部分UCI数据库进行实验,实验结果证明:CF-WFCM算法的聚类结果优于FCM算法的聚类结果.函数CFuzziness(w)不仅可以评价属性的重要性,而且可以评价属性评价函数的优劣.实验说明了这一问题.最后我们对CF-WFCM算法进行了讨论. 展开更多
关键词 梯度递减算法 fuzzy c Mean算法 属性权重学习算法 聚类有效性函数
在线阅读 下载PDF
采用混合策略联合优化的模糊C-均值聚类信息熵点云简化算法 被引量:2
6
作者 黄鹤 黄佳慧 +2 位作者 刘国权 王会峰 高涛 《西安交通大学学报》 EI CAS CSCD 北大核心 2024年第7期214-226,共13页
针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时... 针对传统聚类算法处理点云简化问题时精度低、耗时长且易丢失特征信息等问题,提出了一种基于动态精英自适应混合策略的鹈鹕算法(DEAMPOA)与加权熵法联合优化的模糊C-均值聚类(FCM)信息熵点云简化算法。采用动态自适应种群混合策略,同时融合了精英反向化思路,显著提升了鹈鹕优化算法(POA)的收敛趋势和全局寻优能力,提高了寻找FCM最优聚类中心的成功率;利用DEAMPOA结合加权熵法对FCM进行优化,提高鲁棒性的同时增强了搜索精度,得到较好的聚类结果;在8种UCI标准数据集上与4种算法对比进行聚类性能评估实验,验证了所提方法综合性能优越;将所提方法与信息熵融合,并应用在三维点云KITTI数据集简化中。实验结果表明:与包围框简化法、随机采样简化法和特征选择简化法对比,所提方法全局误差简化前后点集之间平均欧式距离(MED)指标分别降低了2.25%、6.93%、5.74%,点云简化效果最优且运行速度满足要求。 展开更多
关键词 c-均值聚类 鹈鹕优化算法 点云简化 信息熵
在线阅读 下载PDF
基于改进FCM的冲压件缺陷图像分割算法
7
作者 张玉杰 高晗 《计算机工程》 CAS CSCD 北大核心 2024年第10期342-351,共10页
在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对... 在工业质检过程中,冲压件缺陷图像分割作为缺陷检测的重要环节,直接影响缺陷检测效果。而传统的模糊C均值(FCM)聚类算法未考虑到空间邻域信息,对于噪声干扰较为敏感,导致分割精度较差,且其整体易受初始值的影响,造成收敛速度变慢。针对上述问题,提出一种改进的FCM算法。采用内核诱导距离中的简单两项代替传统的欧氏距离,将原有的空间像素映射到高维特征空间,提高线性可分概率和计算速度;利用图像像素之间的空间相关性,通过引入改进的马尔可夫随机场对FCM目标函数进行修正,提高算法的抗噪能力以及分割精度;采用秃鹰搜索(BES)算法确定FCM的初始聚类中心,提高算法的收敛速度,同时避免算法陷入局部极值的情况。为验证改进FCM算法的性能,选取划分熵、划分系数、Xie_Beni系数以及迭代次数作为评价指标,并与近年来先进的图像分割算法进行对比。实验结果表明,改进FCM算法具有更好的抗噪能力,能得到更好的缺陷分割效果,对工业生产中的冲压件缺陷检测有一定的应用价值。 展开更多
关键词 模糊c均值聚类 工业应用 冲压件缺陷 内核诱导距离 马尔可夫随机场 秃鹰搜索算法
在线阅读 下载PDF
基于FCM及快速迭代收缩阈值算法的平面ECT图像重建
8
作者 张立峰 唐志浩 《计量学报》 CSCD 北大核心 2024年第6期899-906,共8页
为提高平面阵列电容成像系统的成像精度,提出一种基于模糊C均值聚类(FCM)进行数据优化的快速迭代收缩阈值算法(FISTA)。根据平面阵列电容数据的特点,首先利用FCM算法对测量电容值进行分类,保留有效电容值,实现电容向量降维;然后利用离... 为提高平面阵列电容成像系统的成像精度,提出一种基于模糊C均值聚类(FCM)进行数据优化的快速迭代收缩阈值算法(FISTA)。根据平面阵列电容数据的特点,首先利用FCM算法对测量电容值进行分类,保留有效电容值,实现电容向量降维;然后利用离散小波基(DWT)对灰度值进行稀疏表示,并建立L1正则化模型,采用FISTA进行求解,以实现图像重建;最后将FCM处理后的电容值分别用于Landweber算法、Tikhonov算法进行重建对比。仿真与实验结果表明,该算法重建图像的平均相对误差约为0.0527,平均相关系数约为0.9422,均优于其它算法,且重建图像伪影较少,更接近真实情况;因此,所提算法具有更好的重建效果。。 展开更多
关键词 电容层析成像 平面阵列电容 图像重建 模糊c均值聚类 快速迭代收缩阈值算法 缺陷检测
在线阅读 下载PDF
基于改进模糊C均值聚类与SMO算法的地铁轨道健康状态评价 被引量:2
9
作者 许以凯 杨艺 +2 位作者 张明凯 赵才友 万壮 《铁道标准设计》 北大核心 2024年第11期53-59,共7页
轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该... 轨道健康状态评价技术对于保障列车的运行安全与乘客的舒适性有重要意义,为寻求一种新的轨道设备综合评价方法,实现对轨道健康状态的科学评价,提出一种基于改进模糊C均值聚类和序列最小优化算法(SMO)构建轨道健康状态评估分析模型。该模型首先提出包含轨道几何状态和结构状态的综合评价指标体系;其次采用变异系数法计算评价指标的权重系数并代入模糊C均值聚类法,得到各轨道样本的分类结果;在此基础上,再利用序列最小优化算法通过划分数据对轨道健康状态进行评价;最后通过实例分析对该评价模型进行验证并开展研究。研究结果表明,经模型评价的855个轨道单元评价结果中优良比例为94%,预测效果良好,平均误差为5%,进而验证了该模型的指标体系和评价方法的科学性和合理性,并给出了进一步研究优化的方向。本文对各轨道指标统筹综合评价,为地铁轨道工务管理线路质量评价提供一种新思路,使轨道设备管理变得有序可控,减少人力、物力资源的浪费。 展开更多
关键词 地铁 轨道 健康状态评价 变异系数法 模糊c均值聚类 SMO算法
在线阅读 下载PDF
基于FCM和EO-SVM水轮机尾水管压力脉动特征识别 被引量:2
10
作者 刘茜媛 王利英 +1 位作者 张路遥 曹庆皎 《水电能源科学》 北大核心 2024年第1期162-165,共4页
为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾... 为有效识别水轮机尾水管压力脉动特征,提出了一种基于模糊C均值聚类、平衡优化器算法与支持向量机的识别方法。该方法首先采用平衡优化器算法优化SVM的惩罚因子和核函数以获得更好的SVM参数组合,构建EO-SVM识别模型以实现其在水轮机尾水管压力脉动特征识别中的应用。然后采用模糊C均值聚类算法将待分类的压力脉动特征进行初始聚类,将其分为四类,并依据聚类结果选择最靠近每类中心的样本作为EO-SVM模型的训练样本。将SVM和EO-SVM两种模型的识别分类结果进行比较,验证了所提EO-SVM模型的有效性。 展开更多
关键词 压力脉动 小波包分析 模糊c均值聚类 平衡优化器算法 支持向量机
在线阅读 下载PDF
Integrated parallel forecasting model based on modified fuzzy time series and SVM 被引量:1
11
作者 Yong Shuai Tailiang Song Jianping Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2017年第4期766-775,共10页
A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is ... A dynamic parallel forecasting model is proposed, which is based on the problem of current forecasting models and their combined model. According to the process of the model, the fuzzy C-means clustering algorithm is improved in outliers operation and distance in the clusters and among the clusters. Firstly, the input data sets are optimized and their coherence is ensured, the region scale algorithm is modified and non-isometric multi scale region fuzzy time series model is built. At the same time, the particle swarm optimization algorithm about the particle speed, location and inertia weight value is improved, this method is used to optimize the parameters of support vector machine, construct the combined forecast model, build the dynamic parallel forecast model, and calculate the dynamic weight values and regard the product of the weight value and forecast value to be the final forecast values. At last, the example shows the improved forecast model is effective and accurate. 展开更多
关键词 fuzzy c-means clustering fuzzy time series interval partitioning support vector machine particle swarm optimization algorithm parallel forecasting
在线阅读 下载PDF
含(·,C)型Fuzzy参数的几何规划的研究
12
作者 曹炳元 《长沙水电师院学报(自然科学版)》 1995年第1期15-21,共7页
利用(·,C)型fuzzy函数的性质,将含(·,C)型fuzzy参数的几何规划Ⅰ,化成普通参数几何规划Ⅱ,并论证了Ⅰ与Ⅱ有相同的困难度.然后提出了求解Ⅱ的四种算法.
关键词 几何规划 困难度 模糊参数
全文增补中
基于二阶混联灵敏度矩阵的ECT图像重建 被引量:1
13
作者 陈达 张立峰 樊振萍 《计量学报》 CSCD 北大核心 2024年第8期1147-1154,共8页
电容层析成像技术求解图像重建问题属于非线性问题。在灵敏度矩阵的推导过程中,通常只保留灵敏度系数的线性部分,但是被忽略的非线性部分同样包含重要的成像信息。为了提高图像重建精度,基于二阶灵敏度系数的数学定义,结合模糊C-均值聚... 电容层析成像技术求解图像重建问题属于非线性问题。在灵敏度矩阵的推导过程中,通常只保留灵敏度系数的线性部分,但是被忽略的非线性部分同样包含重要的成像信息。为了提高图像重建精度,基于二阶灵敏度系数的数学定义,结合模糊C-均值聚类算法和电场中心线理论,建立了二阶混联灵敏度矩阵,并将矩阵引入到Landweber算法中,提出了二阶Landweber算法;最后,进行仿真和静态实验,并与传统的Tikhonov算法和一阶Landweber算法进行对比,结果表明,二阶混联灵敏度矩阵可以提高图像重建精度。 展开更多
关键词 电容层析成像 图像重建 电场中心线 模糊c-均值聚类算法 二阶混联灵敏度矩阵
在线阅读 下载PDF
基于自适应近邻信息的模糊C均值聚类算法 被引量:2
14
作者 高云龙 李建鹏 +3 位作者 郑兴莘 邵桂芳 祝青园 曹超 《光学精密工程》 EI CAS CSCD 北大核心 2024年第7期1045-1058,共14页
传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点... 传统的模糊C均值算法直接基于原始数据进行聚类,数据的内在结构可能会被噪声、异常值或其他因素破坏,因此聚类性能会受到影响。为提升FCM算法的鲁棒性,提出了一种基于自适应近邻信息的模糊C均值聚类算法。近邻信息指的是一种基于数据点之间相似度的度量,每个数据点都可以看作其他数据点的近邻,但是不同数据点之间的相似度是不同的。将样本点的近邻信息GX和类中心点的近邻信息GV融入基础FCM模型中,为聚类过程提供更多的数据结构信息,用于指导聚类算法中的簇划分过程,以提升算法的稳定性,并提出了3个迭代算法求解本文提出的聚类模型。与其他先进聚类算法对比,在部分基准数据集上聚类性能有10%以上的提升,同时还从参数敏感性、收敛性、消融实验等方面对算法进行评价。实验结果可以充分显示本文提出的聚类算法的可行性与有效性。 展开更多
关键词 模糊c均值聚类 自适应近邻 算法鲁棒性 迭代算法
在线阅读 下载PDF
Road network extraction in classified SAR images using genetic algorithm
15
作者 肖志强 鲍光淑 蒋晓确 《Journal of Central South University of Technology》 2004年第2期180-184,共5页
Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road netw... Due to the complicated background of objectives and speckle noise, it is almost impossible to extract roads directly from original synthetic aperture radar(SAR) images. A method is proposed for extraction of road network from high-resolution SAR image. Firstly, fuzzy C means is used to classify the filtered SAR image unsupervisedly, and the road pixels are isolated from the image to simplify the extraction of road network. Secondly, according to the features of roads and the membership of pixels to roads, a road model is constructed, which can reduce the extraction of road network to searching globally optimization continuous curves which pass some seed points. Finally, regarding the curves as individuals and coding a chromosome using integer code of variance relative to coordinates, the genetic operations are used to search global optimization roads. The experimental results show that the algorithm can effectively extract road network from high-resolution SAR images. 展开更多
关键词 genetic algorithm road network extraction SAR image fuzzy c means
在线阅读 下载PDF
基于模糊c-均值聚类的亚热带丘陵区土壤肥力空间分异与管理分区
16
作者 赖佳鑫 李康祺 +3 位作者 周萍 戴玉婷 郭晓彬 吴金水 《植物营养与肥料学报》 CAS CSCD 北大核心 2024年第4期702-716,共15页
[目的]亚热带丘陵区地形复杂,土壤肥力空间变异大,科学地将土壤按照相似地力进行分区,是实现丘陵区土壤精确管理,优化土壤培肥技术的理论基础。[方法]研究对象位于亚热带丘陵区的典型小流域-湖南省长沙县金井镇,2009年在全镇范围内(112 ... [目的]亚热带丘陵区地形复杂,土壤肥力空间变异大,科学地将土壤按照相似地力进行分区,是实现丘陵区土壤精确管理,优化土壤培肥技术的理论基础。[方法]研究对象位于亚热带丘陵区的典型小流域-湖南省长沙县金井镇,2009年在全镇范围内(112 km~2)密集布置946个样点采集土壤样品,以测定的土壤肥力指标为数据源,包括土壤有机碳(SOC)、全氮(TN)、全磷(TP)、速效氮(AN)、有效磷(AP)和pH,采用地统计学和模糊c-均值聚类算法,分析流域土壤肥力的空间异质性;采用主成分分析法进行土壤肥力分区,并根据数据的差异显著性和变异系数对分区结果进行验证。[结果]除pH外,流域内土壤有机碳、全氮、全磷、速效氮和有效磷均存在中等至强的空间变异,变异系数(CV)介于36%~125%。基于主成分分析和模糊c-均值聚类可将研究区划分为3个肥力管理分区:MZ1、MZ2和MZ3,分区后各土壤肥力指标的变异系数(CV)不同程度地降低,以pH变异系数降幅最小(6%),AP变异系数降幅最大(96%)。同一分区内主要土壤肥力指标趋于同质化,分区间则异质化显著(P<0.01)。分区间水稻产量差异明显,MZ1区晚稻产量和早晚稻总产量显著高于MZ2和MZ3 (P<0.01)。MZ1、MZ2和MZ3区土壤pH值分别为4.12、4.04和4.00,均属于极酸水平;SOC分别为15.15、14.38和12.24 g/kg,均处于高水平;TN也为高水平(1.56、1.48和1.34 g/kg);TP为高至很高水平(0.86、0.69和0.60 g/kg);AN则处于很低至低水平(41.08、35.33和26.16 mg/kg);AP为中低水平(8.63、4.46和3.39 mg/kg)。[结论]亚热带丘陵区地形地貌复杂,是土壤肥力空间变异较大的主要影响因素。通过土壤肥力管理分区,可有效降低区域内肥力指标的变异程度,优化复杂丘陵区耕地管理措施。本研究区域中MZ1、MZ2和MZ3区均应着重改良土壤酸化现象,提高肥料氮素利用率,避免过量施用化学氮肥;MZ1区可适当减施磷肥,避免关键生育期过量施用磷肥;MZ2和MZ3区可以考虑适量施用生物酶活化磷肥或增施有机肥,以提高作物对磷素的利用效率。 展开更多
关键词 土壤肥力分区 空间分异 模糊聚类 主成分分析 养分管理措施
在线阅读 下载PDF
基于放电曲线和模糊C均值法的退役电池一致性分选方法
17
作者 赵光金 孟高军 +2 位作者 董锐锋 苏令 张正 《电源技术》 CAS 北大核心 2024年第9期1769-1776,共8页
在电动汽车井喷式增长的背景下,巨量退役的动力电池如何回收成为当前电动汽车行业亟待解决的问题。考虑到退役电池容量、内阻等性能会出现较大的不一致性,在对退役电池梯次利用前,有必要根据其性能状况进行一致性分选,以实现退役电池的... 在电动汽车井喷式增长的背景下,巨量退役的动力电池如何回收成为当前电动汽车行业亟待解决的问题。考虑到退役电池容量、内阻等性能会出现较大的不一致性,在对退役电池梯次利用前,有必要根据其性能状况进行一致性分选,以实现退役电池的经济效益和利用率最大化。提出了一种基于放电曲线和改进模糊C均值算法的退役电池一致性分选方法。该方法以退役电池单体为研究对象,借助1 C充放电实验选取放电曲线,进行特征参数提取;在此基础上,结合改进的模糊C均值算法构建退役电池高精度分选模型,基于简化的特征点提取过程,在不同容量梯度的退役电池下对分选方法的可行性进行了验证。 展开更多
关键词 退役动力电池 放电曲线 一致性分选 特征参数 模糊c均值算法
在线阅读 下载PDF
基于平滑因子引入和神经网络优化的锂电池SOC估计方法
18
作者 付炳喆 李沂洹 +1 位作者 王玮 李慷 《电源技术》 CAS 北大核心 2024年第1期143-149,共7页
为提高锂电池荷电状态(SOC)的估计精度,提出了一种基于平滑因子引入和神经网络优化的锂电池SOC估计方法。将黄金分割优选法和模糊C均值聚类算法应用于RBF神经网络,分别用来确定最佳隐含层神经元个数和径向基中心;采用遗传算法对高斯核... 为提高锂电池荷电状态(SOC)的估计精度,提出了一种基于平滑因子引入和神经网络优化的锂电池SOC估计方法。将黄金分割优选法和模糊C均值聚类算法应用于RBF神经网络,分别用来确定最佳隐含层神经元个数和径向基中心;采用遗传算法对高斯核函数宽度及连接权值进行优化,解决了RBF神经网络结构和初始参数难以确定的问题。将滑动时间窗口内的放电容量作为平滑因子引入神经网络模型,增强了RBF网络对锂离子电池非线性特性拟合的能力。基于实验获得的锂离子电池在联邦城市行车计划(FUDS)工况下的数据,对所提出的方法进行仿真和验证,结果表明,所提方法显著提升了锂电池SOC的估计精度。 展开更多
关键词 电池荷电状态 径向基神经网络 遗传算法 模糊c均值聚类 黄金分割优选法
在线阅读 下载PDF
基于快速鲁棒模糊C有序均值聚类的苗族服饰图像分割算法
19
作者 陈阳 黄成泉 +3 位作者 雷欢 彭家磊 覃小素 周丽华 《毛纺科技》 CAS 北大核心 2024年第8期81-89,共9页
苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础... 苗族服饰图像具有绣线纹理复杂、色彩形状多样等特征,针对模糊C有序均值(Fuzzy C-Ordered-Means,FCOM)聚类算法在进行苗族服饰图像分割时,存在耗时长、分割效果不理想的问题,提出了一种快速鲁棒模糊C有序均值聚类算法。在FCOM算法基础上加入了竞争学习的思想,通过构造新的隶属度约束函数,对像素点进行更加强制清晰的划分,提高图像像素定位的准确性,从而加快算法的收敛速度。结果表明,本文算法在图像分割过程中能有效地降低异常值的影响,获得更加准确的分割结果。该算法在Jaccard相似系数、分割精度、Dice相似系数、模糊划分系数及模糊划分熵等性能方面均优于其他几种模糊C均值(Fuzzy C-Means,FCM)算法,且分割时间与迭代次数也优于FCOM算法。 展开更多
关键词 苗族图像分割 聚类算法 模糊c有序均值 竞争学习 鲁棒性
在线阅读 下载PDF
改进模糊聚类语义分割声环境功能区划图
20
作者 曾宇 姚琨 秦勤 《噪声与振动控制》 北大核心 2025年第2期210-215,共6页
声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线... 声环境功能区划多采用地理信息系统进行研究,但公开发布的声环境功能区划方案中的文字和图片无法直接用于地理信息系统分析。首先提出改进模糊C均值聚类超像素方法,对声环境功能区划图进行语义分割以获取声功能区信息。接着采用简单线性迭代聚类构建超像素,提取声环境功能区划图特征矩阵,基于K-means++改进模糊C均值聚类算法,语义分割超像素粒化的声环境功能区划图,并以声功能区面积占比计算结果偏差为评价指标,分析超像素尺度对分割结果的影响。然后基于不同图像特征矩阵构建方法和聚类中心初始化方法,使用模糊C均值聚类、高斯混合模型聚类、K-medoids聚类语义分割声环境功能区划图,最后比较不同组合方案的声功能区面积占比计算结果偏差,验证方法的有效性。 展开更多
关键词 声学 声环境功能区划图 彩色图像分割 模糊c均值聚类 简单线性迭代聚类 K-means++算法
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部