期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Satellite constellation design with genetic algorithms based on system performance
1
作者 Xueying Wang Jun Li +2 位作者 Tiebing Wang Wei An Weidong Sheng 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第2期379-385,共7页
Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optic... Satellite constellation design for space optical systems is essentially a multiple-objective optimization problem. In this work, to tackle this challenge, we first categorize the performance metrics of the space optical system by taking into account the system tasks(i.e., target detection and tracking). We then propose a new non-dominated sorting genetic algorithm(NSGA) to maximize the system surveillance performance. Pareto optimal sets are employed to deal with the conflicts due to the presence of multiple cost functions. Simulation results verify the validity and the improved performance of the proposed technique over benchmark methods. 展开更多
关键词 space optical system non-dominated sorting genetic algorithm(NSGA) Pareto optimal set satellite constellation design surveillance performance
在线阅读 下载PDF
双树复小波特征融合的板材压缩感知协同检测与分选 被引量:3
2
作者 李超 张怡卓 +1 位作者 于慧伶 曹军 《电机与控制学报》 EI CSCD 北大核心 2015年第8期81-87,共7页
提出一种对板材表面缺陷和纹理进行协同快速准确检测的算法。根据双树复小波所特有的方向性和时移不变性,研究了板材表面图像的双树复小波特征提取及融合算法,对板材表面图像进行3级双树复小波分解得到40个特征向量,并通过遗传算法优选... 提出一种对板材表面缺陷和纹理进行协同快速准确检测的算法。根据双树复小波所特有的方向性和时移不变性,研究了板材表面图像的双树复小波特征提取及融合算法,对板材表面图像进行3级双树复小波分解得到40个特征向量,并通过遗传算法优选出23个关键特征,优选后的特征能够较为完整地表达板材图像的复杂信息并减小数据冗余。最后采用压缩感知理论,将优选后的特征向量作为样本矩阵列,构造出训练样本数据字典,通过最小残差完成对板材表面信息的分类识别。实验对木材表面存在的弦切纹、径切纹、活结和死结等4类柞木样本进行了检测,正确率分别为91.8%、100%、96.4%和91.8%,该算法能够以95%的平均识别率完成板材表面缺陷、纹理的协同检测。 展开更多
关键词 在线检测 协同分选 双树复小波 遗传融合 压缩感知
在线阅读 下载PDF
结合Contourlet和HSI变换的组合优化遥感图像融合方法 被引量:13
3
作者 宋梦馨 郭平 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2012年第1期83-88,共6页
针对遥感图像中全色图像与多光谱图像融合问题,提出一种组合优化图像融合方法——COFM.通过HSI变换获取多光谱图像的亮度分量后,采用Contourlet变换对全色图像和多光谱图像的亮度分量进行分解,分别获取其高频和低频子图;对高频子图提取... 针对遥感图像中全色图像与多光谱图像融合问题,提出一种组合优化图像融合方法——COFM.通过HSI变换获取多光谱图像的亮度分量后,采用Contourlet变换对全色图像和多光谱图像的亮度分量进行分解,分别获取其高频和低频子图;对高频子图提取分形特征,采用取最大的融合规则进行融合;对低频子图提取能量特征后采用第二代非支配排序遗传算法选择融合权值;然后使用加权模型对其进行融合.实验结果表明,COFM的融合效果优于传统图像融合方法,能够在提升图像空间分辨率的同时较好地保留光谱信息. 展开更多
关键词 遥感图像融合 组合优化 分形特征 第二代非支配排序遗传算法
在线阅读 下载PDF
考虑交货期的双资源柔性作业车间节能调度 被引量:9
4
作者 张洪亮 徐静茹 +1 位作者 谈波 徐公杰 《系统仿真学报》 CAS CSCD 北大核心 2023年第4期734-746,共13页
为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sor... 为解决含有机器和工人双资源约束的柔性作业车间节能调度问题,在考虑交货期的基础上,建立了以总提前和拖期惩罚值及总能耗最小为目标的双资源柔性作业车间节能调度模型。提出了一种改进的非支配排序遗传算法(improved non-dominated sorting genetic algorithmⅡ,INSGA-Ⅱ)进行求解。针对所优化的目标,设计了一种三阶段解码方法以获得高质量的可行解;利用动态自适应交叉和变异算子以获得更多优良个体;改进拥挤距离以获得收敛性和分布性更优的种群。将INSGA-Ⅱ与多种多目标优化算法进行对比分析,实验结果表明所提算法可行且有效。 展开更多
关键词 双资源约束 柔性作业车间 提前/拖期惩罚 能耗 INSGA-Ⅱ(improved non-dominated sorting genetic algorithmⅡ)
在线阅读 下载PDF
基于混合遗传蚁群算法的多目标FJSP问题研究 被引量:5
5
作者 赵小惠 卫艳芳 +3 位作者 赵雯 胡胜 王凯峰 倪奕棋 《组合机床与自动化加工技术》 北大核心 2023年第1期188-192,共5页
针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初... 针对多目标柔性作业车间调度问题求解过程中未综合考虑解集多样性与求解效率的问题,提出了一种混合遗传蚁群算法来求解。首先,通过改进的NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ)获取问题的较优解,以此来确定蚁群算法的初始信息素分布;其次,根据提出的自适应伪随机比例规则和改进的信息素更新规则来优化蚂蚁的遍历过程;最后,通过邻域搜索,扩大蚂蚁的搜索空间,从而提高解集的多样性。通过Kacem和BRdata算例进行实验验证,证明混合遗传蚁群算法具有更高的求解效率和更好解集多样性。 展开更多
关键词 柔性作业车间调度 多目标优化 NSGA-Ⅱ(non-dominated sorting genetic algorithmⅡ) 蚁群算法
在线阅读 下载PDF
基于能耗的柔性作业车间调度多目标优化算法 被引量:9
6
作者 张丽 王鲁 《现代电子技术》 北大核心 2020年第7期126-130,共5页
针对柔性作业车间调度问题中的约束条件,考虑到低碳排放是制造业急需解决的问题,构建了一种基于最大完成时间和最大能耗的数学模型,提出一种改进的多目标优化算法。首先,在传统的NSGA-Ⅱ算法中融入粒子群算法的思想,提高解集的搜索能力... 针对柔性作业车间调度问题中的约束条件,考虑到低碳排放是制造业急需解决的问题,构建了一种基于最大完成时间和最大能耗的数学模型,提出一种改进的多目标优化算法。首先,在传统的NSGA-Ⅱ算法中融入粒子群算法的思想,提高解集的搜索能力;其次,将机器和工序部分进行分层编码,保证解集的合法性;然后,使用一种改进的密度估计方法计算平均距离,保证解集的分布性。为了验证算法的有效性,使用mk01~mk07标准测试数据对NSGA-Ⅱ算法及改进的多目标优化算法进行对比实验。结果显示,改进后算法得到的Pareto最优解集在解的多样性及收敛性方面优于传统多目标算法。 展开更多
关键词 柔性作业车间调度 多目标优化 能耗 分层编码 调和平均数 融合非支配排序进化算法
在线阅读 下载PDF
NSGA Ⅱ based multi-objective homing trajectory planning of parafoil system 被引量:1
7
作者 陶金 孙青林 +1 位作者 陈增强 贺应平 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第12期3248-3255,共8页
Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a ki... Homing trajectory planning is a core task of autonomous homing of parafoil system.This work analyzes and establishes a simplified kinematic mathematical model,and regards the homing trajectory planning problem as a kind of multi-objective optimization problem.Being different from traditional ways of transforming the multi-objective optimization into a single objective optimization by weighting factors,this work applies an improved non-dominated sorting genetic algorithm Ⅱ(NSGA Ⅱ) to solve it directly by means of optimizing multi-objective functions simultaneously.In the improved NSGA Ⅱ,the chaos initialization and a crowding distance based population trimming method were introduced to overcome the prematurity of population,the penalty function was used in handling constraints,and the optimal solution was selected according to the method of fuzzy set theory.Simulation results of three different schemes designed according to various practical engineering requirements show that the improved NSGA Ⅱ can effectively obtain the Pareto optimal solution set under different weighting with outstanding convergence and stability,and provide a new train of thoughts to design homing trajectory of parafoil system. 展开更多
关键词 parafoil system homing trajectory planning multi-objective optimization non-dominated sorting genetic algorithm(NSGA) non-uniform b-spline
在线阅读 下载PDF
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
8
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
在线阅读 下载PDF
Multi-objective Function Optimization for Environmental Control of a Greenhouse Based on a RBF and NSGA-Ⅱ
9
作者 Zhou Xiu-li Liu Ming-wei +3 位作者 Wang Ling Xu Xiao-chuan Chen Gang Wang De-fu 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第1期75-89,共15页
To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solve... To better meet the needs of crop growth and achieve energy savings and efficiency enhancements,constructing a reliable environmental model to optimize greenhouse decision parameters is an important problem to be solved.In this work,a radial-basis function(RBF)neural network was used to mine the potential changes of a greenhouse environment,a temperature error model was established,a multi-objective optimization function of energy consumption was constructed and the corresponding decision parameters were optimized by using a non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ).The simulation results showed that RBF could clarify the nonlinear relationship among the greenhouse environment variables and decision parameters and the greenhouse temperature.The NSGA-Ⅱ could well search for the Pareto solution for the objective functions.The experimental results showed that after 40 min of combined control of sunshades and sprays,the temperature was reduced from 31℃to 25℃,and the power consumption was 0.5 MJ.Compared with tire three days of July 24,July 25 and July 26,2017,the energy consumption of the controlled production greenhouse was reduced by 37.5%,9.1%and 28.5%,respectively. 展开更多
关键词 greenhouse temperature multi-objective optimization radial-basis function(RBF) non-dominated sorting genetic algorithm with an elite strategy(NSGA-Ⅱ)
在线阅读 下载PDF
Orbit Design for Responsive Space Using Multiple-objective Evolutionary Computation
10
作者 FU Xiaofeng WU Meiping ZHANG Jing 《空间科学学报》 CAS CSCD 北大核心 2012年第2期238-244,共7页
Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A... Responsive orbits have exhibited advantages in emergencies for their excellent responsiveness and coverage to targets.Generally,there are several conflicting metrics to trade in the orbit design for responsive space.A special multiple-objective genetic algorithm,namely the Nondominated Sorting Genetic AlgorithmⅡ(NSGAⅡ),is used to design responsive orbits.This algorithm has considered the conflicting metrics of orbits to achieve the optimal solution,including the orbital elements and launch programs of responsive vehicles.Low-Earth fast access orbits and low-Earth repeat coverage orbits,two subtypes of responsive orbits,can be designed using NSGAI under given metric tradeoffs,number of vehicles,and launch mode.By selecting the optimal solution from the obtained Pareto fronts,a designer can process the metric tradeoffs conveniently in orbit design.Recurring to the flexibility of the algorithm,the NSGAI promotes the responsive orbit design further. 展开更多
关键词 Multiple-objective evolutionary computation non-dominated sorting genetic algorithmⅡ(NSGAⅡ) Low-Earth Fast Access Orbit(FAO) Low-Earth Repeat Coverage Orbit(RCO) Successive-coverage constellation for responsive deployment
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部