Zirconia/stainless steel (ZrO2/SUS316L) functionally graded materials (FGMs) were fabricated by tape casting and laminating. Microstructures of FGMs were observed by optical microscope. Fracture behavior of FGMs in di...Zirconia/stainless steel (ZrO2/SUS316L) functionally graded materials (FGMs) were fabricated by tape casting and laminating. Microstructures of FGMs were observed by optical microscope. Fracture behavior of FGMs in different loading modes and influences of different gradient changes on flexural strength were investigated. The results show that ZrO2/ SUS316L FGMs with graded components at interlayers are obtained after they are sintered in vacuum and pressureless condition at 1 350 ℃. TheⅠ?Ⅱ mixed mode crack creates in composite layer and grows to both sides zigzag while loading on ZrO2 layer. Flexural strengths are 496.4,421.7 and 387.5 MPa when gradient changes are 10%,15% and 20%,but flexural strengths of the corresponding fracture layers are 387.1,334.6 and 282.3 MPa since cracks of FGMs are affected by three-dimensional stress,respectively. The cracks are generated in ZrO2 layer and extend to SUS316L layer while loading is added on SUS316L layer,flexural strength does not change with the graded components and keeps consistent basically.展开更多
In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is emp...In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is employed for adaptive mesh refinement.The proposed approach is capable of capturing the fracture process with a localized mesh refinement that provides notable gains in computational efficiency.The implementation is validated against experimental data and other numerical experiments on orthotropic materials with different material orientations.The results reveal an increase in the stiffness and the maximum force with increasing material orientation angle.The study is then extended to the analysis of orthotropic FGMs.It is observed that,if the gradation in fracture properties is neglected,the material gradient plays a secondary role,with the fracture behaviour being dominated by the orthotropy of the material.However,when the toughness increases along the crack propagation path,a substantial gain in fracture resistance is observed.展开更多
Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis r...Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.展开更多
This manuscript presents the comprehensive study of thickness stretching effects on the free vibration,static stability and bending of multilayer functionally graded(FG)carbon nanotubes reinforced composite(CNTRC)nano...This manuscript presents the comprehensive study of thickness stretching effects on the free vibration,static stability and bending of multilayer functionally graded(FG)carbon nanotubes reinforced composite(CNTRC)nanoplates.The nanoscale and microstructure influences are considered through a modified nonlocal strain gradient continuum model.Based on power-law functions,four different patterns of CNTs distribution are considered in this analysis,a uniform distribution UD,FG-V CNTRC,FG-X CNTRC,and FG-O CNTRC.A 3D kinematic shear deformation theory is proposed to include the stretching influence,which is neglected in classical theories.Hamilton's principle is applied to derive the governing equations of motion and associated boundary conditions.Analytical solutions are developed based on Galerkin method to solve the governing equilibrium equations based on the generalized higher-order shear deformation theory and the nonlocal strain gradient theory and get the static bending,buckling loads,and natural frequencies of nanoplates.Verification with previous works is presented.A detailed parametric analysis is carried out to highlight the impact of thickness stretching,length scale parameter(nonlocal),material scale parameter(gradient),CNTs distribution pattern,geometry of the plate,various boundary conditions and the total number of layers on the stresses,deformation,critical buckling loads and vibration frequencies.Many new results are also reported in the current study,which will serve as a benchmark for future research.展开更多
The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is...The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is shown that the composition of η phase in the core zone is Co_3W_3C (M_6 C type). The structure of cobalt based solid solution binder phase is fcc type. At the cooling stage of the sintering process, the phase transition of η phase, i.e. M_6C→M_12C and the martensitic phase transition of the cobalt based solid solution binder phase, i.e. fcc→hcp are suppressed, which facilitates the strengthening of the alloy. Because the instantaneous temperature of the discharge channel is as high as 10 000 ℃ during the wire cutting process, the processed surface is oxidized. Nevertheless, the oxide layer thickness is in micro grade. In the oxide film, η phase is decomposed into W_2C and CoO, and cobalt based solid solution binder is selectively oxidized, while WC remains stable due to the existence of carbon containing liquid organic cutting medium.展开更多
This article presents the investigation of nonlinear vibration analysis of tapered porous functionally graded skew(TPFGS)plate considering the effects of geometrical non-uniformities to optimize the thickness in the s...This article presents the investigation of nonlinear vibration analysis of tapered porous functionally graded skew(TPFGS)plate considering the effects of geometrical non-uniformities to optimize the thickness in the structural design.The TPFGS plate is analyzed considering linearly,bi-linearly,and exponentially varying thicknesses.The plate’s effective material properties are tailor-made using a modified power-law distribution in which gradation varies along the thickness direction of the TPFGS plate.Incorporating the non-linear finite element formulation to develop the kinematic equation’s displacement model for the TPFGS plate is based on the first-order shear deformation theory(FSDT)in conjunction with von Karman’s nonlinearity.The nonlinear governing equations are established by Hamilton’s principle.The direct iterative method is adopted to solve the nonlinear mathematical relations to obtain the nonlinear frequencies.The influence of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the TPFGS plate for different skew angles and variable thicknesses are studied for various geometrical parameters.The influence of taper ratio,variable thickness,skewness,porosity distributions,gradation,and boundary conditions on the plate’s nonlinear vibration is demonstrated.The nonlinear frequency analysis reveals that the geometrical nonuniformities and porosities significantly influence the porous functionally graded plates with varying thickness than the uniform thickness.Besides,exponentially and linearly variable thicknesses can be considered for the thickness optimizations of TPFGS plates in the structural design.展开更多
基金Project (2007K06-13) supported by the Science and Technique Research and Development Program of Shaanxi Province, China
文摘Zirconia/stainless steel (ZrO2/SUS316L) functionally graded materials (FGMs) were fabricated by tape casting and laminating. Microstructures of FGMs were observed by optical microscope. Fracture behavior of FGMs in different loading modes and influences of different gradient changes on flexural strength were investigated. The results show that ZrO2/ SUS316L FGMs with graded components at interlayers are obtained after they are sintered in vacuum and pressureless condition at 1 350 ℃. TheⅠ?Ⅱ mixed mode crack creates in composite layer and grows to both sides zigzag while loading on ZrO2 layer. Flexural strengths are 496.4,421.7 and 387.5 MPa when gradient changes are 10%,15% and 20%,but flexural strengths of the corresponding fracture layers are 387.1,334.6 and 282.3 MPa since cracks of FGMs are affected by three-dimensional stress,respectively. The cracks are generated in ZrO2 layer and extend to SUS316L layer while loading is added on SUS316L layer,flexural strength does not change with the graded components and keeps consistent basically.
基金E.Martínez-Paneda acknowledges financial support from the Royal Commission for the 1851 Exhibition through their Research Fellowship programme(RF496/2018).
文摘In this work,we extend the recently proposed adaptive phase field method to model fracture in orthotropic functionally graded materials(FGMs).A recovery type error indicator combined with quadtree decomposition is employed for adaptive mesh refinement.The proposed approach is capable of capturing the fracture process with a localized mesh refinement that provides notable gains in computational efficiency.The implementation is validated against experimental data and other numerical experiments on orthotropic materials with different material orientations.The results reveal an increase in the stiffness and the maximum force with increasing material orientation angle.The study is then extended to the analysis of orthotropic FGMs.It is observed that,if the gradation in fracture properties is neglected,the material gradient plays a secondary role,with the fracture behaviour being dominated by the orthotropy of the material.However,when the toughness increases along the crack propagation path,a substantial gain in fracture resistance is observed.
文摘Recent advancements in additive manufacturing(AM)have revolutionized the design and production of complex engineering microstructures.Despite these advancements,their mathematical modeling and computational analysis remain significant challenges.This research aims to develop an effective computational method for analyzing the free vibration of functionally graded(FG)microplates under high temperatures while resting on a Pasternak foundation(PF).This formulation leverages a new thirdorder shear deformation theory(new TSDT)for improved accuracy without requiring shear correction factors.Additionally,the modified couple stress theory(MCST)is incorporated to account for sizedependent effects in microplates.The PF is characterized by two parameters including spring stiffness(k_(w))and shear layer stiffness(k_(s)).To validate the proposed method,the results obtained are compared with those of the existing literature.Furthermore,numerical examples explore the influence of various factors on the high-temperature free vibration of FG microplates.These factors include the length scale parameter(l),geometric dimensions,material properties,and the presence of the elastic foundation.The findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the findings significantly enhance our comprehension of the free vibration of FG microplates in high thermal environments.In addition,the results of this research will have great potential in military and defense applications such as components of submarines,fighter aircraft,and missiles.
基金supported by The Algerian General Directorate of Scientific Research and Technological Development(DGRSDT)University of Mustapha Stambouli of Mascara(UMS Mascara)in Algeria。
文摘This manuscript presents the comprehensive study of thickness stretching effects on the free vibration,static stability and bending of multilayer functionally graded(FG)carbon nanotubes reinforced composite(CNTRC)nanoplates.The nanoscale and microstructure influences are considered through a modified nonlocal strain gradient continuum model.Based on power-law functions,four different patterns of CNTs distribution are considered in this analysis,a uniform distribution UD,FG-V CNTRC,FG-X CNTRC,and FG-O CNTRC.A 3D kinematic shear deformation theory is proposed to include the stretching influence,which is neglected in classical theories.Hamilton's principle is applied to derive the governing equations of motion and associated boundary conditions.Analytical solutions are developed based on Galerkin method to solve the governing equilibrium equations based on the generalized higher-order shear deformation theory and the nonlocal strain gradient theory and get the static bending,buckling loads,and natural frequencies of nanoplates.Verification with previous works is presented.A detailed parametric analysis is carried out to highlight the impact of thickness stretching,length scale parameter(nonlocal),material scale parameter(gradient),CNTs distribution pattern,geometry of the plate,various boundary conditions and the total number of layers on the stresses,deformation,critical buckling loads and vibration frequencies.Many new results are also reported in the current study,which will serve as a benchmark for future research.
基金Projects(50323008, 50574104) supported by the National Natural Science Foundation of ChinaProject (04JJ3084) supported by the Natural Science Foundation of Hunan Province, China
文摘The phase composition, phase transition and phase structure transformation of the wire-cut section of functionally graded WC-Co cemented carbide with dual phase structure were investigated by XRD phase analysis. It is shown that the composition of η phase in the core zone is Co_3W_3C (M_6 C type). The structure of cobalt based solid solution binder phase is fcc type. At the cooling stage of the sintering process, the phase transition of η phase, i.e. M_6C→M_12C and the martensitic phase transition of the cobalt based solid solution binder phase, i.e. fcc→hcp are suppressed, which facilitates the strengthening of the alloy. Because the instantaneous temperature of the discharge channel is as high as 10 000 ℃ during the wire cutting process, the processed surface is oxidized. Nevertheless, the oxide layer thickness is in micro grade. In the oxide film, η phase is decomposed into W_2C and CoO, and cobalt based solid solution binder is selectively oxidized, while WC remains stable due to the existence of carbon containing liquid organic cutting medium.
文摘This article presents the investigation of nonlinear vibration analysis of tapered porous functionally graded skew(TPFGS)plate considering the effects of geometrical non-uniformities to optimize the thickness in the structural design.The TPFGS plate is analyzed considering linearly,bi-linearly,and exponentially varying thicknesses.The plate’s effective material properties are tailor-made using a modified power-law distribution in which gradation varies along the thickness direction of the TPFGS plate.Incorporating the non-linear finite element formulation to develop the kinematic equation’s displacement model for the TPFGS plate is based on the first-order shear deformation theory(FSDT)in conjunction with von Karman’s nonlinearity.The nonlinear governing equations are established by Hamilton’s principle.The direct iterative method is adopted to solve the nonlinear mathematical relations to obtain the nonlinear frequencies.The influence of the porosity distributions and porosity parameter indices on the nonlinear frequency responses of the TPFGS plate for different skew angles and variable thicknesses are studied for various geometrical parameters.The influence of taper ratio,variable thickness,skewness,porosity distributions,gradation,and boundary conditions on the plate’s nonlinear vibration is demonstrated.The nonlinear frequency analysis reveals that the geometrical nonuniformities and porosities significantly influence the porous functionally graded plates with varying thickness than the uniform thickness.Besides,exponentially and linearly variable thicknesses can be considered for the thickness optimizations of TPFGS plates in the structural design.