This study is to determine the support mechanism of pre-stressed expandable props for the stope roof in room- and-pillar mining, which is crucial for maintaining stability and preventing roof collapse in mines. Utiliz...This study is to determine the support mechanism of pre-stressed expandable props for the stope roof in room- and-pillar mining, which is crucial for maintaining stability and preventing roof collapse in mines. Utilizing an engineering case from a gold mine in Dandong, China, a laboratory-based similar test is conducted to extract the actual roof characteristic curve. This test continues until the mining stope collapses due to a U-shaped failure. Concurrently, a semi-theoretical method for obtaining the roof characteristic curve is proposed and verified against the actual curve. The semi-theoretical method calculated that the support force and vertical displacement at the demarcation point between the elastic and plastic zones of the roof characteristic curve are 5.0 MPa and 8.20 mm, respectively, corroborating well with the laboratory-based similar test results of 0.22 MPa and 0.730 mm. The weakening factor for the plastic zone in the roof characteristic curve was semi-theoretically estimated to be 0.75. The intersection between the actual roof characteristic curve and the support characteristic curves of expandable props, natural pillars, and concrete props indicates that the expandable prop is the most effective “yielding support” for the stope roof in room-and-pillar mining. That is, the deformation and failure of the stope roof can be effectively controlled with proper release of roof stress. This study provides practical insights for optimizing support strategies in room-and-pillar mining, enhancing the safety and efficiency of mining operations.展开更多
The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common...The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common cases.Stress analytical method for plane problem of a double-layered thick-walled cylinder subjected to a type of non-uniform pressure on the outer surface and uniform radial pressure on the inner surface is given.The power series method of complex function is used.The stress analytical solution is obtained with the assumption that two layers of a cylinder are fully contacted.The distributions of normal and tangential contact stress along the interface,tangential stress on the inner boundary and stresses in the radial direction at θ=0°,45° and 90°,are obtained.An example indicates that,when the elastic modulus of the inner layer of a double-layered thick-walled cylinder is smaller than that of the outer layer,the tangential stress is smaller than that in the corresponding point for a traditional cylinder composed of homogeneous materials.In that way,stress concentration at the inner surface can be alleviated and the stress distribution is more uniform.This is a capable way to enhance the elastic ultimate bearing capacity of thick-walled cylinder.展开更多
This paper presents a multi-ANN approximation approach to approximate complex non-linear function. Comparing with single-ANN methods the proposed approach improves and increases the approximation and generalization ab...This paper presents a multi-ANN approximation approach to approximate complex non-linear function. Comparing with single-ANN methods the proposed approach improves and increases the approximation and generalization ability, and adaptability greatly in learning processes of networks. The simulation results have been shown that the method can be applied to the modeling and identification of complex dynamic control systems.展开更多
By establishing the numerical model in the vertical plane and the similar model in the horizontal plane of gas flow in goaf, the influence of high drainage roadway or drilling on the gas seepage field was analyzed, an...By establishing the numerical model in the vertical plane and the similar model in the horizontal plane of gas flow in goaf, the influence of high drainage roadway or drilling on the gas seepage field was analyzed, and the extraction mechanism was clarified. On this basis, the academic thought of directional long drilling group instead of high drainage roadway was put forward. And then using complex function theory, the permeation mechanical model of drilling group with circle distribution in the mining-induced fracture zone was established to explore the coupling relationship between the drilling quantity, extraction volume and the equivalent extraction rate of single drilling. Finally, combined with the concrete geological production conditions, the main parameters of directional long drilling group were determined. The distance between the drilling group center and the air-return roadway is 24 m, the height is 18 m, and the three drillings are in an approximate equilateral triangle distribution with a space of 8 m. The equivalent extraction square is 4.15 m2. It is shown that the effect of directional long drilling group is evident. The gas content in the upper comer is controlled below 0.95%, the content in the tail roadway is kept below the alarm value, and the content is over 50% in the drill, realizing the secure and effective extraction of coal and gas.展开更多
基金Project(2022YFC2903801) supported by the National Key Research and Development Program of ChinaProjects(52374117, 52274115) supported by the National Natural Science Foundation of China。
文摘This study is to determine the support mechanism of pre-stressed expandable props for the stope roof in room- and-pillar mining, which is crucial for maintaining stability and preventing roof collapse in mines. Utilizing an engineering case from a gold mine in Dandong, China, a laboratory-based similar test is conducted to extract the actual roof characteristic curve. This test continues until the mining stope collapses due to a U-shaped failure. Concurrently, a semi-theoretical method for obtaining the roof characteristic curve is proposed and verified against the actual curve. The semi-theoretical method calculated that the support force and vertical displacement at the demarcation point between the elastic and plastic zones of the roof characteristic curve are 5.0 MPa and 8.20 mm, respectively, corroborating well with the laboratory-based similar test results of 0.22 MPa and 0.730 mm. The weakening factor for the plastic zone in the roof characteristic curve was semi-theoretically estimated to be 0.75. The intersection between the actual roof characteristic curve and the support characteristic curves of expandable props, natural pillars, and concrete props indicates that the expandable prop is the most effective “yielding support” for the stope roof in room-and-pillar mining. That is, the deformation and failure of the stope roof can be effectively controlled with proper release of roof stress. This study provides practical insights for optimizing support strategies in room-and-pillar mining, enhancing the safety and efficiency of mining operations.
基金Projects(50874047,51074014,51174014)supported by the National Natural Science Foundation of China
文摘The stress state around circular openings,such as boreholes,shafts,and tunnels,is usually needed to be evaluated.Solutions for stresses,strains and ultimate bearing capacities of pressurized hollow cylinder are common cases.Stress analytical method for plane problem of a double-layered thick-walled cylinder subjected to a type of non-uniform pressure on the outer surface and uniform radial pressure on the inner surface is given.The power series method of complex function is used.The stress analytical solution is obtained with the assumption that two layers of a cylinder are fully contacted.The distributions of normal and tangential contact stress along the interface,tangential stress on the inner boundary and stresses in the radial direction at θ=0°,45° and 90°,are obtained.An example indicates that,when the elastic modulus of the inner layer of a double-layered thick-walled cylinder is smaller than that of the outer layer,the tangential stress is smaller than that in the corresponding point for a traditional cylinder composed of homogeneous materials.In that way,stress concentration at the inner surface can be alleviated and the stress distribution is more uniform.This is a capable way to enhance the elastic ultimate bearing capacity of thick-walled cylinder.
文摘This paper presents a multi-ANN approximation approach to approximate complex non-linear function. Comparing with single-ANN methods the proposed approach improves and increases the approximation and generalization ability, and adaptability greatly in learning processes of networks. The simulation results have been shown that the method can be applied to the modeling and identification of complex dynamic control systems.
基金Project(50834005) supported by the National Natural Science Foundation of ChinaProject(2010QZ06) supported by the Fundamental Research Funds for the Central Universities of China
文摘By establishing the numerical model in the vertical plane and the similar model in the horizontal plane of gas flow in goaf, the influence of high drainage roadway or drilling on the gas seepage field was analyzed, and the extraction mechanism was clarified. On this basis, the academic thought of directional long drilling group instead of high drainage roadway was put forward. And then using complex function theory, the permeation mechanical model of drilling group with circle distribution in the mining-induced fracture zone was established to explore the coupling relationship between the drilling quantity, extraction volume and the equivalent extraction rate of single drilling. Finally, combined with the concrete geological production conditions, the main parameters of directional long drilling group were determined. The distance between the drilling group center and the air-return roadway is 24 m, the height is 18 m, and the three drillings are in an approximate equilateral triangle distribution with a space of 8 m. The equivalent extraction square is 4.15 m2. It is shown that the effect of directional long drilling group is evident. The gas content in the upper comer is controlled below 0.95%, the content in the tail roadway is kept below the alarm value, and the content is over 50% in the drill, realizing the secure and effective extraction of coal and gas.