Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o...Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.展开更多
在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural net...在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural network,RBFNN)的车辆能耗预测模型。首先分析车辆能耗影响因素并基于Min-Max标准化方法对影响因素矩阵进行归一化处理,然后基于灰狼算法(grey wolf optimization,GWO)优化RBFNN算法隐藏层中心点、高斯函数的宽度和隐含层与输出层连接的权值的训练,最后从横向模型对比和实车实测数据进行模型预测准确度分析。测试结果表明:RBFNN算法预测准确度较传统回归模型提高约12%,整体准确度达到90%以上,能够很好地对城市机动车能耗进行预测。展开更多
文摘Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems.
文摘在交通碳达峰和碳中和的背景下,高精度、细粒度、可实施性强的机动车能耗实时预测方法成为交通减碳关键组成之一。针对传统基于回归的车辆能耗模型普适性较差的问题,提出了一种基于径向基函数神经网络(radial basis function neural network,RBFNN)的车辆能耗预测模型。首先分析车辆能耗影响因素并基于Min-Max标准化方法对影响因素矩阵进行归一化处理,然后基于灰狼算法(grey wolf optimization,GWO)优化RBFNN算法隐藏层中心点、高斯函数的宽度和隐含层与输出层连接的权值的训练,最后从横向模型对比和实车实测数据进行模型预测准确度分析。测试结果表明:RBFNN算法预测准确度较传统回归模型提高约12%,整体准确度达到90%以上,能够很好地对城市机动车能耗进行预测。