Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of workin...Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.展开更多
The thick-san top-ctal catrig technology has been in use in China for over a decade,and has given rise to siguscant economic efficiendes. Eftorts in reeent years to extend its applica tion to more complex mining condi...The thick-san top-ctal catrig technology has been in use in China for over a decade,and has given rise to siguscant economic efficiendes. Eftorts in reeent years to extend its applica tion to more complex mining conditions, mostly high-gas seams , with or without proneness ofspontaneous combustion. have brought about new safety problems This paper will highlight thefcatures and problems retared with thick-seam top-coal caving systems, compared with conventionai, fully-mecbanized longwall systems , particularly issues retated to methane, spontaneous combustion and dust,and disam the methods and measures to ded with them.展开更多
According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-con...According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-connection between Visual Basic (VB) and Excel to exchange data, uses Component Object Model (COM) component of MATLAB to plot charts of the three zones and to export the corresponding coordinates of the isolines. An example shows that this software is convenient and simple. By using it, the three zones can be easily determined. The software is convenient in studies and analyses of the three zones in goaf.展开更多
Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and ...Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and numerical calculation, the control techniques of surrounding rocks in GER-FLTC working face are studied in this paper. The two main difficulties of stability of surrounding rocks at gob-side retained entry in fully-mechanized longwall working face are the stability control of top coal and control of large deformation of GER-FLTC working face. Interaction mechanical model between roofing and roadside backfilling in GER-FLTC is established and the equations for the calculation of roof-cutting resistance of roadside backfilling are derived. Results of numerical calculation show that the damage zones of top coal can be categorized into the delaminating zone of top coal above the backfilling, tensile damage zone of top coal above the retained roadway and shear damage zone of the upper rib of the solid coal. Stability control of top coal is the critical part to success of GER-FLTC. With consideration of large deformation of surrounding rocks of gob-side retained entry in fully-mechanized longwall, the support technique of‘‘roofing control and wall strengthening'' is proposed where high strength and highly prestressed anchor rods and diagonal tensile anchor cables support are used for top coal, high strength and highly prestressed yielding anchor rod support is used for solid coal and roadside prestressed load-carrying backfilling is constructed by high-water material, in order to maintain the integrity of the top coal, transfer load, high resistance yielding load-carrying of solid coal, roof-cutting of roadside backfilling and support,and to achieve GER-FLTC. Results from this study are successfully applied in engineering practice.展开更多
The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis o...The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.展开更多
A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-us...A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae.展开更多
In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain ...In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain theoretically the factors affecting spontaneous coal combustion, such as rock bursts, high temperatures, high ventilation resistance, slow advancing speed and large obliquity mining. Key technologies to prevent spontaneous combustion occurring in sharply inclined seams in deep mines are pro- posed; these include pouring water, stopping leakage in upper and lower comers of the working face, choking off the goaf and cov- eting the coal. CO concentrations were controlled within two years to less than 15×10^-6 at the upper comer by applying these tech- nologies at the 1410 working face of the Huafeng coal mine. Our method has significant theoretical value and is of practical impor- tance in controlling spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines.展开更多
Against the background of analyzing coal wall stability in 14101 fully mechanized longwall top coal caving face in Majialiang coal mine,based on the torque equilibrium of the coal wall,shield support and the roof stra...Against the background of analyzing coal wall stability in 14101 fully mechanized longwall top coal caving face in Majialiang coal mine,based on the torque equilibrium of the coal wall,shield support and the roof strata,an elastic mechanics model was established to calculate the stress applied on the coal wall.The displacement method was used to obtain the stress and deformation distributions of the coal wall.This study also researched the influence of support resistance,protective pressure to the coal wall,fracture position of the main roof and mining height on the coal wall deformation.The following conclusions are drawn:(1) The shorter the distance from the longwall face,the greater the vertical compressive stress and horizontal tensile stress borne by the coal wall.The coal wall is prone to failure in the form of compressive-shear and tension;(2) With increasing support resistance,the revolution angle of the main roof decreases linearly.As the support resistance and protective force supplied by the face guard increases,the maximum deformation of the coal wall decreases linearly;(3) As the face approaches the fracture position of the main roof,coal wall horizontal deformation increases significantly,and the coal wall is prone to instability;and(4) The best mining height of 14101 longwall face is 3.0 m.展开更多
To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were dev...To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.展开更多
Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used ...Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used to forecast the mining cost of working faces, which shows the model’s potential prospect of applications.展开更多
基金Projects 50374066 supported by the National Natural Science Foundation of ChinaNCET-05-0478 by the Program for New Century Excellent Talents in University
文摘Characteristics of gas emission at the K8206 working face in the Third mine of the Yangquan Coal Group were investigated. The effects of strata movement,advancing velocity of working face,production capacity of working face and gas extraction capability of strike high-level entry on gas emission at K8206 working face were analyzed. A regression equation,reflecting the relationship between relative gas emission rate and the production capacity of work-ing faces,was established. Another regression equation showing the relationship between the gas emission rate from adjacent layers when the working face was advancing for one metre and advancing velocity was derived. It can be con-cluded that,1) the amount of gas emitted at the K8206 working face is far greater than that of ordinary top coal caving faces with a dip length of 180-190 m; 2) the dynamic process of gas emission from adjacent layers during the initial mining stage is controlled by the movement of key strata; 3) the amount of gas emitted that needs to be forced out by air is greatly affected by the capability of gas extraction; 4) when the advancing velocity is between 3.5-5.5 m/d or when the output is up to 8-12 kt/d,the gas emission from adjacent layers is almost constant.
文摘The thick-san top-ctal catrig technology has been in use in China for over a decade,and has given rise to siguscant economic efficiendes. Eftorts in reeent years to extend its applica tion to more complex mining conditions, mostly high-gas seams , with or without proneness ofspontaneous combustion. have brought about new safety problems This paper will highlight thefcatures and problems retared with thick-seam top-coal caving systems, compared with conventionai, fully-mecbanized longwall systems , particularly issues retated to methane, spontaneous combustion and dust,and disam the methods and measures to ded with them.
文摘According to the theory of ventilation network, a model for a filtration flow field in goaf was built and simulation soft- ware for determining the three zones in goaf has been developed. This software uses no-gap-connection between Visual Basic (VB) and Excel to exchange data, uses Component Object Model (COM) component of MATLAB to plot charts of the three zones and to export the corresponding coordinates of the isolines. An example shows that this software is convenient and simple. By using it, the three zones can be easily determined. The software is convenient in studies and analyses of the three zones in goaf.
基金supported by Chinese National Programs for Fundamental Research and Development(973 Program)(2013CB227905)Natural Science Foundation of Jiangsu Province of China(BK20140210)
文摘Based on the engineering background of gob-side entry retaining in fully-mechanized longwall with top coal caving(GER-FLTC) on N2105 working face of Yuwu coal mine, by adopting the methods of theoretical analysis and numerical calculation, the control techniques of surrounding rocks in GER-FLTC working face are studied in this paper. The two main difficulties of stability of surrounding rocks at gob-side retained entry in fully-mechanized longwall working face are the stability control of top coal and control of large deformation of GER-FLTC working face. Interaction mechanical model between roofing and roadside backfilling in GER-FLTC is established and the equations for the calculation of roof-cutting resistance of roadside backfilling are derived. Results of numerical calculation show that the damage zones of top coal can be categorized into the delaminating zone of top coal above the backfilling, tensile damage zone of top coal above the retained roadway and shear damage zone of the upper rib of the solid coal. Stability control of top coal is the critical part to success of GER-FLTC. With consideration of large deformation of surrounding rocks of gob-side retained entry in fully-mechanized longwall, the support technique of‘‘roofing control and wall strengthening'' is proposed where high strength and highly prestressed anchor rods and diagonal tensile anchor cables support are used for top coal, high strength and highly prestressed yielding anchor rod support is used for solid coal and roadside prestressed load-carrying backfilling is constructed by high-water material, in order to maintain the integrity of the top coal, transfer load, high resistance yielding load-carrying of solid coal, roof-cutting of roadside backfilling and support,and to achieve GER-FLTC. Results from this study are successfully applied in engineering practice.
文摘The noise level of coal face by full-mechanized coal winning technology was measured in a coal mine. And then it was analyzed and evaluated using environment science, ergonomics and fussy mathematics analysis. Basis of the statistics and analysis of the measured noise level some measures, such as applying the new materials and improving the construction of the equipment, were carried out. The resuts show that they can reduce the noise level, improve the working environment and enhance the work efficiency.
基金supports for this work provided by Na-tional basic research program of China (No. 2007CB209400)the National Natural Science Foundation of China (No. 50834004)+1 种基金the National Natural Science Foundation of China (No. 50574090) SR Foundation of China University of Mining & Technology (No. 50634050)
文摘A fully-mechanized coal mining (FMCM) technology capable of filling up the goaf with wastes (including solid wastes) is described. Industrial tests have proved that by using this technology not only can waste be re-used but also coal resources can be exploited with a higher recovery rate without removing buildings located over the working faces. Two special devices, a hydraulic support and a scraper conveyor, run side-by-side on the same working face to simultaneously realize mining and filling. These are described in detail. The tests allow analysis of rock pressure and ground subsidence when backfilling techniques are employed. These values are compared to those from mining without using backfilling techniques, under the same geological conditions. The concept of equivalent mining height is proposed based on theoretical analysis of rock pressure and ground subsidence. The upper limits of the rock pressure and ground subsidence can be estimated in backfilling mining using this concept along with traditional engineering formulae.
基金Projects 2007B53 supported by the Foundation for National Excellent Doctoral Dissertation of ChinaBK2008123 by the Natural Science Foundation of Jiangsu Province
文摘In order to prevent spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines in China, we have analyzed the characteristics of spontaneous coal combustion and explain theoretically the factors affecting spontaneous coal combustion, such as rock bursts, high temperatures, high ventilation resistance, slow advancing speed and large obliquity mining. Key technologies to prevent spontaneous combustion occurring in sharply inclined seams in deep mines are pro- posed; these include pouring water, stopping leakage in upper and lower comers of the working face, choking off the goaf and cov- eting the coal. CO concentrations were controlled within two years to less than 15×10^-6 at the upper comer by applying these tech- nologies at the 1410 working face of the Huafeng coal mine. Our method has significant theoretical value and is of practical impor- tance in controlling spontaneous coal combustion occurring at a fully mechanized caving face with large obliquity in deep mines.
基金provided by the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Graduate Students of Jiangsu Province Innovation Program (No.CXZZ13_0948)the National Natural Science Foundation of China (No.51304202)the Natural Science Foundation of Jiangsu Province (No.BK20130190)
文摘Against the background of analyzing coal wall stability in 14101 fully mechanized longwall top coal caving face in Majialiang coal mine,based on the torque equilibrium of the coal wall,shield support and the roof strata,an elastic mechanics model was established to calculate the stress applied on the coal wall.The displacement method was used to obtain the stress and deformation distributions of the coal wall.This study also researched the influence of support resistance,protective pressure to the coal wall,fracture position of the main roof and mining height on the coal wall deformation.The following conclusions are drawn:(1) The shorter the distance from the longwall face,the greater the vertical compressive stress and horizontal tensile stress borne by the coal wall.The coal wall is prone to failure in the form of compressive-shear and tension;(2) With increasing support resistance,the revolution angle of the main roof decreases linearly.As the support resistance and protective force supplied by the face guard increases,the maximum deformation of the coal wall decreases linearly;(3) As the face approaches the fracture position of the main roof,coal wall horizontal deformation increases significantly,and the coal wall is prone to instability;and(4) The best mining height of 14101 longwall face is 3.0 m.
基金the National Basic Research Program of China (No.2014CB046905)Innovation Project for Graduates in Jiangsu Province (No.KYLX15_1405)+1 种基金the National Natural Science Foundation of China (Nos.51274191 and 51404245)the Doctoral Fund of Ministry of Education of China (No.20130095110018)
文摘To investigate the abnormal ground pressures and roof control problem in fully mechanized repeated mining of residual coal after room and pillar mining, the roof fracture structural model and mechanical model were developed using numerical simulation and theoretical analysis. The roof fracture characteristics of a repeated mining face were revealed and the ground pressure law and roof supporting condi- tions of the repeated mining face were obtained. The results indicate that when the repeated mining face passes the residual pillars, the sudden instability causes fracturing in the main roof above the old goal and forms an extra-large rock block above the mining face. A relatively stable "Voussoir beam" structure is formed after the advance fracturing of the main roof. When the repeated mining face passes the old goaf, as the large rock block revolves and touches gangue, the rock block will break secondarily under overburden rock loads. An example calculation was performed involving an integrated mine in Shanxi province, results showed that minimum working resistance values of support determined to be reason- able were respectively 11,412 kN and 10,743 kN when repeated mining face passed through residual pillar and goaf. On-site ground pressure monitoring results indicated that the mechanical model and support resistance calculation were reasonable.
文摘Based on the neural network technique, this paper proposes a BP neural network model which integrates geological factors which affect top coal caving in a comprehensive index. The index of top coal caving may be used to forecast the mining cost of working faces, which shows the model’s potential prospect of applications.