An all-fiber polarization maintaining high-power laser system operating at 1.7 μm based on the Ramaninduced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbiumdope...An all-fiber polarization maintaining high-power laser system operating at 1.7 μm based on the Ramaninduced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbiumdoped oscillator and two-stage amplifiers with polarization maintaining commercial silica fibers and devices, which can provide robust and stable soliton generation. High-power soliton laser with the average power of 0.28 W,the repetition rate of 42.7 MHz, and pulse duration of 515 fs is generated directly from the main amplifier.Our experiment provides a feasible method for high-power all-fiber polarization maintaining femtosecond laser generation working at 1.7 μm.展开更多
In this paper,a simple adaptive power dividing function for the design of a dual-input Doherty power amplifier(DPA)is presented.In the presented approaches,the signal separation function(SSF)at different frequency poi...In this paper,a simple adaptive power dividing function for the design of a dual-input Doherty power amplifier(DPA)is presented.In the presented approaches,the signal separation function(SSF)at different frequency points can be characterized by a polynomial.And in the practical test,the coefficients of SSF can be determined by measuring a small number of data points of input power.Same as other dualinput DPAs,the proposed approach can also achieve high output power and back-off efficiency in a broadband operation band by adjusting the power distribution ratio flexibly.Finally,a 1.5-2.5 GHz highefficiency dual-input Doherty power amplifier is implemented according to this approach.The test results show that the peak power is 48.6-49.7d Bm,and the 6-d B back-off efficiency is 51.0-67.0%,and the saturation efficiency is 52.4-74.6%.The digital predistortion correction is carried out at the frequency points of 1.8/2.1GHz,and the adjacent channel power ratio is lower than-54.5d Bc.Simulation and experiment results can verify the effectiveness and correctness of the proposed method.展开更多
A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A ...A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A typical JTWPA consists of thousands of Josephson junctions connected in series to form a transmission line and hundreds of shunt LC resonators periodically loaded along the line for phase matching.Because the variation of these capacitors and inductors can be detrimental to their high-frequency characteristics,the fabrication of a JTWPA typically necessitates precise processing equipment.To guide the fabrication process and further improve the design for manufacturability,it is necessary to understand how each electronic component affects the amplifier.In this paper,we use the harmonic balance method to conduct a comprehensive study on the impact of nonuniformity and fabrication yield of the electronic components on the performance of a JTWPA.The results provide insightful and scientific guidance for device design and fabrication processes.展开更多
According to the theories of optimal noise match and optimal power match, a method for calculating the optimal source impedance of low noise amplifier (LNA) is proposed based on the input reflection coefficient S11....According to the theories of optimal noise match and optimal power match, a method for calculating the optimal source impedance of low noise amplifier (LNA) is proposed based on the input reflection coefficient S11. Moreover.with the help of Smith chart, the calculation process is detailed, and the trade-off between the lowest noise figure and the maximum power gain is obtained during the design of LNA input impedance matching network. Based on the Chart 0. 35-μm CMOS process, a traditional cascode LNA circuit is designed and manufactured. Simulation and experimental results have a good agreement with the theoretical analysis, thus proving the correctness of theoretical analysis and the feasibility of the method.展开更多
Transistors are nonlinear devices, which can produce nonlinear distortion in amplifier while amplifying signals. For weak nonlinear distortion, the expressions of total harmonic distortion (THD), the second order in...Transistors are nonlinear devices, which can produce nonlinear distortion in amplifier while amplifying signals. For weak nonlinear distortion, the expressions of total harmonic distortion (THD), the second order intermodulation distortion(IM2 ), the third order intermodulation distortion(IM 3) and intercept point(IP 3) are deduced. With the aid of software Multisim, we simulate transistor common emitter amplifier, transistor common emitter amplifier with resistor in emitter, differential amplifier and differential amplifier with resistor between emitters. The simulational results and theoretical analyses are almost the same.展开更多
The new 1 kW power module for ADS project needs the optimization of cooling design including water flow and tunnel layout, and the water flow of three tons per hour was chosen to be a goal for a 20 kW power source.Acc...The new 1 kW power module for ADS project needs the optimization of cooling design including water flow and tunnel layout, and the water flow of three tons per hour was chosen to be a goal for a 20 kW power source.According to analysis from the insertion and integrated loss, about 24 modules were integrated into the rated power. Thus, every module has a cooling flow of 2.1 L/min for RF heat load and power supply loss, which is very hard to achieve if no special consideration and techniques. A new thermal simulation method was introduced for thermal analysis of cooling plate through CST multi-physics suite,especially for temperature of power LDMOS transistor.Some specific measures carried out for the higher heat transfer were also presented in this paper.展开更多
A waveguide amplifier is fabricated by Ag^+-Na^+ two-step ion exchange on Er/Yb-doped phosphate glass. The spectroscopic performance of glass and the properties of channel waveguide are characterized. A double-pass ...A waveguide amplifier is fabricated by Ag^+-Na^+ two-step ion exchange on Er/Yb-doped phosphate glass. The spectroscopic performance of glass and the properties of channel waveguide are characterized. A double-pass configuration is adopted to measure the gain and noise figure (NF) of the waveguide amplifier, and the comparison of gain and NF for the single and double-pass configuration of the waveguide amplifier is presented. The results show that the double-pass configuration can make the gain increase from 8.8dB (net gain 2.2dB/cm) of the single-pass one to 14.6dB (net gain 3.65dB/cm) for small input power at 1534nm, and the NF are all lower than 5.5dB for both the configurations.展开更多
We report a fabrication process and characterization of the Josephson parametric amplifier(JPA) for the single-shot quantum state measurement of superconducting multiqubit system. The device is prepared using Nb film ...We report a fabrication process and characterization of the Josephson parametric amplifier(JPA) for the single-shot quantum state measurement of superconducting multiqubit system. The device is prepared using Nb film as its base layer,which is convenient in the sample patterning process like e-beam lithography and film etching. Our results show that the JPA has a bandwidth up to 600 MHz with gain above 15 dB and noise temperature approaching the quantum limit. The qubit state differentiation measurements demonstrate the signal-to-noise ratio around 3 and the readout fidelity above 97%and 91% for the ground and first-excited states, respectively.展开更多
A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introdu...A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 m W and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-m W maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission(ASE) nor harmful oscillation around 1030 nm is observed. Moreover,through a two-stage all-fiber-integrated amplifier, an output power of 740 m W is generated with a pulse width of 200 ps.展开更多
We report the passive phase locking of four high power Yb-doped fiber amplifiers with ring cavity.The interference patterns at different output power are observed and the Strehl ratios are measured.The maximum coheren...We report the passive phase locking of four high power Yb-doped fiber amplifiers with ring cavity.The interference patterns at different output power are observed and the Strehl ratios are measured.The maximum coherent output power of the fiber array is up to 1062 W by multi-stage amplification.The stable beam profiles of various phase relationships are observed by controlling the position of the feedback fiber,in good agreement with the calculated results.By using master oscillator power-amplifier(MOPA)architecture and broadband operation of passively phased systems,higher power scaling with high beam quality appears to be feasible.展开更多
This paper demonstrated a high power and high beam quality diode-pumped 1319-nm Nd:YAG master oscillator-power amplifier laser system. A thermally near-unstable resonator with four-rod birefringence compensation fiat...This paper demonstrated a high power and high beam quality diode-pumped 1319-nm Nd:YAG master oscillator-power amplifier laser system. A thermally near-unstable resonator with four-rod birefringence compensation fiat-fiat cavity was adopted as the master oscillator. A solid etalon was inserted in the unidirectional ring resonator to compress the laser linewidth. Under a repetition rate of 500 Hz and pulse width of 160 μs, the master oscillator delivers an average output power of 16.8 W at 1319 nm with linear polarisation, beam quality factor M^2=1.16 and linewidth of 3.2 GHz. A double-pass power amplifier with two amplifier stages was employed for higher power scaling and the output power was amplified to be 25.9 W with M^2 = 1.43.展开更多
A C-band high efficiency and high gain two-stage power amplifier based on A1GaN/GaN high electron mobility transistor (HEMT) is designed and measured in this paper. The input and output impedances for the optimum po...A C-band high efficiency and high gain two-stage power amplifier based on A1GaN/GaN high electron mobility transistor (HEMT) is designed and measured in this paper. The input and output impedances for the optimum power-added efficiency (PAE) are determined at the fundamental and 2nd harmonic frequency (f0 and 2f0). The harmonic manipulation networks are designed both in the driver stage and the power stage which manipulate the second harmonic to a very low level within the operating frequency band. Then the inter-stage matching network and the output power combining network are calculated to achieve a low insertion loss. So the PAE and the power gain is greatly improved. In an operation frequency range of 5,4 GHz-5.8 GHz in CW mode, the amplifier delivers a maximum output power of 18.62 W, with a PAE of 55.15 % and an associated power gain of 28.7 dB, which is an outstanding performance.展开更多
A backward wave amplifier(BWA) in a terahertz regime with a novel slow-wave structure(SWS) composed of multi parallel grating pins inside a rectangular waveguide is analyzed. The multi-pin rectangular waveguide SW...A backward wave amplifier(BWA) in a terahertz regime with a novel slow-wave structure(SWS) composed of multi parallel grating pins inside a rectangular waveguide is analyzed. The multi-pin rectangular waveguide SWS possesses good performance and is compatible with micro-fabrication technologies. The dispersion and interaction impedance of the multipin SWS are presented. The stopbands of the modes cling together in a Brillouim zone. The SWS has a high interaction impedance that is suitable for the interaction of multi cylindrical beams. The design, which is based on three parallel pins supporting the wave–beam interaction with four cylindrical beams, is verified by three-dimensional particle-in-cell simulations. A BWA with the central frequency at 340 GHz is demonstrated, and the output power is more than 100 mW.A tuning frequency range of 15 GHz(333–348 GHz) is obtained with a gain of more than 20 dB.展开更多
Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heteroju...Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heterojunction bipolar transistor(DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the In P substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are-2.688 dBm at 210 GHz and-2.88 dBm at 220 GHz,respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications.展开更多
This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadb...This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadband wireless communications. Four important aspects of PA design are addressed in this paper. First, we look at class-E PA design equations and provide an example of a class-E PA that achieves efficiency of 65-70% at 2.4 GHz. Then, we discuss state-of-the-art envelope tracking (ET) design for monolithic wideband RF mobile transmitter applications. A brief overview of Doherty PA design for the next-generation wireless handset applications is then given. Towards the end of the paper, we discuss an inherently broadband and highly efficient class-J PA design targeting future multi-band multi-standard wireless communication protocols.展开更多
To compensate for nonlinear distortion introduced by RF power amplifiers (PAs) with memory effects, two correlated models, namely an extended memory polynomial (EMP) model and a memory lookup table (LUT) model, ...To compensate for nonlinear distortion introduced by RF power amplifiers (PAs) with memory effects, two correlated models, namely an extended memory polynomial (EMP) model and a memory lookup table (LUT) model, are proposed for predistorter design. Two adaptive digital predistortion (ADPD) schemes with indirect learning architecture are presented. One adopts the EMP model and the recursive least square (RLS) algorithm, and the other utilizes the memory LUT model and the least mean square (LMS) algorithm. Simulation results demonstrate that the EMP-based ADPD yields the best linearization performance in terms of suppressing spectral regrowth. It is also shown that the ADPD based on memory LUT makes optimum tradeoff between performance and computational complexity.展开更多
We present a nonlinear ytterbium-doped fiber amplifier based on enhanced nonlinear effects that can produce a flat broadband spectrum ranging from 1050–1225 nm with a maximum average output power of 7.8 W at 14 W pum...We present a nonlinear ytterbium-doped fiber amplifier based on enhanced nonlinear effects that can produce a flat broadband spectrum ranging from 1050–1225 nm with a maximum average output power of 7.8 W at 14 W pump power.Its repetition rate is 89 MHz. Using a pair of gratings and two knife edges as a filter, wavelength tunable picosecond pulses of tens to hundreds of milliwatts can be obtained in the broadband spectrum range. The output power, pulse width, and spectrum(center wavelength and linewidth) are adjusted by tuning the distance of the grating pair and/or the knife edges.Fixing the distance between the two gratings at 15 mm and keeping the output spectrum linewidth at approximately 20 nm,the shortest pulse width obtained is less than 1 ps centered at 1080 nm. The longest wavelength of the short pulses is around1200 nm, and its output power and pulse width are 40 m W and 5.79 ps, respectively. The generation of a flat broadband spectrum is also discussed in this paper.展开更多
We propose and demonstrate a scheme to implement photonic multi-shape ultra-wideband(UWB) signal generation using a semiconductor optical amplifier(SOA) based nonlinear optical loop mirror(NOLM).By employing the...We propose and demonstrate a scheme to implement photonic multi-shape ultra-wideband(UWB) signal generation using a semiconductor optical amplifier(SOA) based nonlinear optical loop mirror(NOLM).By employing the cross phase modulation(XPM) effect,cross gain modulation(XGM),or both,multi-shape UWB waveforms are generated including monocycle,doublet,triplet,and quadruplet pulses.Both the shapes and polarities of the generated pulses are flexible to adjust,which may be very useful in UWB pulse shape modulation and pulse polarity modulation.展开更多
A single-frequency retrievable phase modulated multi-tone fiber amplifier is presented in theory and demonstrated in experiment. A multi-tone seed laser generated by a sine wave phase modulated single-frequency laser ...A single-frequency retrievable phase modulated multi-tone fiber amplifier is presented in theory and demonstrated in experiment. A multi-tone seed laser generated by a sine wave phase modulated single-frequency laser is employed for stimulated Brillouin scattering suppression in an all-fiber amplifier. A demodulation signal which is π phase shifted with respect to the modulation signal is used to retrieve the single-frequency laser from the multi-tone laser. In experiment, we first optimize the all-fiber master-oscillator power-amplifier. With this amplifier, we demonstrate a single-frequency retrievable multi-tone laser with 330-W output when driven by the multi-tone seed, while the ultimate output power is only 130 W when driven by the single-frequency laser. Then, we carry out an experiment for retrieving the single-frequency laser from the amplified multi-tone laser. Results indicate that the single-frequency laser can be retrieved with a sideband suppression of more than 20 dB. Retrieving an even higher power single-frequency laser is possible if a high power demodulator is available.展开更多
We theoretically design a power-efficient ultra-wideband pulse generator by combining three monocycle pulses with different weights. We also experimentally demonstrate a feasible scheme to generate such power-efficien...We theoretically design a power-efficient ultra-wideband pulse generator by combining three monocycle pulses with different weights. We also experimentally demonstrate a feasible scheme to generate such power-efficient ultra-wideband waveforms using cross-phase modulation in a single semiconductor optical amplifier. The designed ultra-wideband pulse fully satisfies the requirements for the spectral mask specified by the Federal Communications Commission with high power efficiency. In the experiment, a power-efficient ultra-wideband waveform with a pulse duration of 310 ps is achieved, and the power efficiency is greatly improved compared with that of a single nlonocycle pulse or a mixture of two monoeycles.展开更多
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10225417 and 61675009)the Natural Science Foundation of Beijing Municipality (Grant Nos. 4204091 and KZ201910005006)the China Postdoctoral Science Foundation (Grant No. 212423)。
文摘An all-fiber polarization maintaining high-power laser system operating at 1.7 μm based on the Ramaninduced soliton self-frequency shifting effect is demonstrated. The entirely fiberized system is built by erbiumdoped oscillator and two-stage amplifiers with polarization maintaining commercial silica fibers and devices, which can provide robust and stable soliton generation. High-power soliton laser with the average power of 0.28 W,the repetition rate of 42.7 MHz, and pulse duration of 515 fs is generated directly from the main amplifier.Our experiment provides a feasible method for high-power all-fiber polarization maintaining femtosecond laser generation working at 1.7 μm.
基金supported by National Natural Science Foundation of China(No.62001061)。
文摘In this paper,a simple adaptive power dividing function for the design of a dual-input Doherty power amplifier(DPA)is presented.In the presented approaches,the signal separation function(SSF)at different frequency points can be characterized by a polynomial.And in the practical test,the coefficients of SSF can be determined by measuring a small number of data points of input power.Same as other dualinput DPAs,the proposed approach can also achieve high output power and back-off efficiency in a broadband operation band by adjusting the power distribution ratio flexibly.Finally,a 1.5-2.5 GHz highefficiency dual-input Doherty power amplifier is implemented according to this approach.The test results show that the peak power is 48.6-49.7d Bm,and the 6-d B back-off efficiency is 51.0-67.0%,and the saturation efficiency is 52.4-74.6%.The digital predistortion correction is carried out at the frequency points of 1.8/2.1GHz,and the adjacent channel power ratio is lower than-54.5d Bc.Simulation and experiment results can verify the effectiveness and correctness of the proposed method.
基金support from the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No.2019319)support from the Start-up Foundation of Suzhou Institute of Nano-Tech and Nano-Bionics,CAS,Suzhou (Grant No.Y9AAD110)。
文摘A Josephson traveling wave parametric amplifier(JTWPA),which is a quantum-limited amplifier with high gain and large bandwidth,is the core device of large-scale measurement and control systems for quantum computing.A typical JTWPA consists of thousands of Josephson junctions connected in series to form a transmission line and hundreds of shunt LC resonators periodically loaded along the line for phase matching.Because the variation of these capacitors and inductors can be detrimental to their high-frequency characteristics,the fabrication of a JTWPA typically necessitates precise processing equipment.To guide the fabrication process and further improve the design for manufacturability,it is necessary to understand how each electronic component affects the amplifier.In this paper,we use the harmonic balance method to conduct a comprehensive study on the impact of nonuniformity and fabrication yield of the electronic components on the performance of a JTWPA.The results provide insightful and scientific guidance for device design and fabrication processes.
基金Supported by the Nature Science Foundation for Key Program of Jiangsu Higher Education Institu-tions of China(09KJA510001)the Creative Talents Foundation of Nantong Universitythe Scientific ResearchFoundation of Nantong University(08B24,09ZW005)~~
文摘According to the theories of optimal noise match and optimal power match, a method for calculating the optimal source impedance of low noise amplifier (LNA) is proposed based on the input reflection coefficient S11. Moreover.with the help of Smith chart, the calculation process is detailed, and the trade-off between the lowest noise figure and the maximum power gain is obtained during the design of LNA input impedance matching network. Based on the Chart 0. 35-μm CMOS process, a traditional cascode LNA circuit is designed and manufactured. Simulation and experimental results have a good agreement with the theoretical analysis, thus proving the correctness of theoretical analysis and the feasibility of the method.
文摘Transistors are nonlinear devices, which can produce nonlinear distortion in amplifier while amplifying signals. For weak nonlinear distortion, the expressions of total harmonic distortion (THD), the second order intermodulation distortion(IM2 ), the third order intermodulation distortion(IM 3) and intercept point(IP 3) are deduced. With the aid of software Multisim, we simulate transistor common emitter amplifier, transistor common emitter amplifier with resistor in emitter, differential amplifier and differential amplifier with resistor between emitters. The simulational results and theoretical analyses are almost the same.
基金supported by the ‘‘strategic priority research program’’ of the Chinese Academy of Sciences(No.XDA030205)
文摘The new 1 kW power module for ADS project needs the optimization of cooling design including water flow and tunnel layout, and the water flow of three tons per hour was chosen to be a goal for a 20 kW power source.According to analysis from the insertion and integrated loss, about 24 modules were integrated into the rated power. Thus, every module has a cooling flow of 2.1 L/min for RF heat load and power supply loss, which is very hard to achieve if no special consideration and techniques. A new thermal simulation method was introduced for thermal analysis of cooling plate through CST multi-physics suite,especially for temperature of power LDMOS transistor.Some specific measures carried out for the higher heat transfer were also presented in this paper.
文摘A waveguide amplifier is fabricated by Ag^+-Na^+ two-step ion exchange on Er/Yb-doped phosphate glass. The spectroscopic performance of glass and the properties of channel waveguide are characterized. A double-pass configuration is adopted to measure the gain and noise figure (NF) of the waveguide amplifier, and the comparison of gain and NF for the single and double-pass configuration of the waveguide amplifier is presented. The results show that the double-pass configuration can make the gain increase from 8.8dB (net gain 2.2dB/cm) of the single-pass one to 14.6dB (net gain 3.65dB/cm) for small input power at 1534nm, and the NF are all lower than 5.5dB for both the configurations.
基金Project supported by the Science Funds from the Ministry of Science and Technology of China(Grant Nos.2015CB921104 and 2016YFA0300601)the National Natural Science Foundation of China(Grant Nos.11674380 and 11874063)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant Nos.XDB07010300 and XDB28000000)the Key Research and Development Program of Guangdong Province,China(Grant No.2018B030326001)
文摘We report a fabrication process and characterization of the Josephson parametric amplifier(JPA) for the single-shot quantum state measurement of superconducting multiqubit system. The device is prepared using Nb film as its base layer,which is convenient in the sample patterning process like e-beam lithography and film etching. Our results show that the JPA has a bandwidth up to 600 MHz with gain above 15 dB and noise temperature approaching the quantum limit. The qubit state differentiation measurements demonstrate the signal-to-noise ratio around 3 and the readout fidelity above 97%and 91% for the ground and first-excited states, respectively.
基金supported by the National Natural Science Foundation of China(Grant No.61205047)
文摘A 980-nm semiconductor saturable absorber mirror(SESAM) mode-locked Yb-doped phosphate fiber laser is demonstrated by using an all-fiber linear cavity configuration. Two different kinds of cavity lengths are introduced into the oscillator to obtain a robust and stable mode-locked seed source. When the cavity length is chosen to be 6 m, the oscillator generates an average output power of 3.5 m W and a pulse width of 76.27 ps with a repetition rate of 17.08 MHz. As the cavity length is optimized to short, 4.4-m W maximum output power and 61.15-ps pulse width are produced at a repetition rate of 20.96 MHz. The output spectrum is centered at 980 nm with a narrow spectral bandwidth of 0.13 nm. In the experiment, no undesired amplified spontaneous emission(ASE) nor harmful oscillation around 1030 nm is observed. Moreover,through a two-stage all-fiber-integrated amplifier, an output power of 740 m W is generated with a pulse width of 200 ps.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60908011 and 60907045the National High Technology Research and Development Program of China under Grant No 2008AA03Z405the National Science and Technology Major Project of China under Grant No 2010ZX04013 and the Shanghai“Phosphor”Science Foundation under Grant No 09QB1401700.
文摘We report the passive phase locking of four high power Yb-doped fiber amplifiers with ring cavity.The interference patterns at different output power are observed and the Strehl ratios are measured.The maximum coherent output power of the fiber array is up to 1062 W by multi-stage amplification.The stable beam profiles of various phase relationships are observed by controlling the position of the feedback fiber,in good agreement with the calculated results.By using master oscillator power-amplifier(MOPA)architecture and broadband operation of passively phased systems,higher power scaling with high beam quality appears to be feasible.
基金Project supported by the National High Technology Research and Development Program and the National Natural Science Foundation of China (Grant No. 60508013)
文摘This paper demonstrated a high power and high beam quality diode-pumped 1319-nm Nd:YAG master oscillator-power amplifier laser system. A thermally near-unstable resonator with four-rod birefringence compensation fiat-fiat cavity was adopted as the master oscillator. A solid etalon was inserted in the unidirectional ring resonator to compress the laser linewidth. Under a repetition rate of 500 Hz and pulse width of 160 μs, the master oscillator delivers an average output power of 16.8 W at 1319 nm with linear polarisation, beam quality factor M^2=1.16 and linewidth of 3.2 GHz. A double-pass power amplifier with two amplifier stages was employed for higher power scaling and the output power was amplified to be 25.9 W with M^2 = 1.43.
基金Project supported by the National Key Basic Research Program of China(Grant No.2011CBA00606)Program for New Century Excellent Talents in University,China(Grant No.NCET-12-0915)the National Natural Science Foundation of China(Grant No.61334002)
文摘A C-band high efficiency and high gain two-stage power amplifier based on A1GaN/GaN high electron mobility transistor (HEMT) is designed and measured in this paper. The input and output impedances for the optimum power-added efficiency (PAE) are determined at the fundamental and 2nd harmonic frequency (f0 and 2f0). The harmonic manipulation networks are designed both in the driver stage and the power stage which manipulate the second harmonic to a very low level within the operating frequency band. Then the inter-stage matching network and the output power combining network are calculated to achieve a low insertion loss. So the PAE and the power gain is greatly improved. In an operation frequency range of 5,4 GHz-5.8 GHz in CW mode, the amplifier delivers a maximum output power of 18.62 W, with a PAE of 55.15 % and an associated power gain of 28.7 dB, which is an outstanding performance.
基金Project supported by the National Basic Research Program of China(Grant No.2014CB339801)the National High Technology Research and Development Program of China(Grant No.G060104012AA8122007B)
文摘A backward wave amplifier(BWA) in a terahertz regime with a novel slow-wave structure(SWS) composed of multi parallel grating pins inside a rectangular waveguide is analyzed. The multi-pin rectangular waveguide SWS possesses good performance and is compatible with micro-fabrication technologies. The dispersion and interaction impedance of the multipin SWS are presented. The stopbands of the modes cling together in a Brillouim zone. The SWS has a high interaction impedance that is suitable for the interaction of multi cylindrical beams. The design, which is based on three parallel pins supporting the wave–beam interaction with four cylindrical beams, is verified by three-dimensional particle-in-cell simulations. A BWA with the central frequency at 340 GHz is demonstrated, and the output power is more than 100 mW.A tuning frequency range of 15 GHz(333–348 GHz) is obtained with a gain of more than 20 dB.
基金Project supported by the National Natural Science Foundation of China(Grant No.61501091)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant Nos.ZYGX2014J003 and ZYGX2013J020)
文摘Design and characterization of a G-band(140–220 GHz) terahertz monolithic integrated circuit(TMIC) amplifier in eight-stage common-emitter topology are performed based on the 0.5-μm In Ga As/In P double heterojunction bipolar transistor(DHBT). An inverted microstrip line is implemented to avoid a parasitic mode between the ground plane and the In P substrate. The on-wafer measurement results show that peak gains are 20 dB at 140 GHz and more than 15-dB gain at 140–190 GHz respectively. The saturation output powers are-2.688 dBm at 210 GHz and-2.88 dBm at 220 GHz,respectively. It is the first report on an amplifier operating at the G-band based on 0.5-μm InP DHBT technology. Compared with the hybrid integrated circuit of vacuum electronic devices, the monolithic integrated circuit has the advantage of reliability and consistency. This TMIC demonstrates the feasibility of the 0.5-μm InGaAs/InP DHBT amplifier in G-band frequencies applications.
文摘This paper presents a brief overview of several promising design technologies for high efficiency silicon-based radio frequency (RF) power amplifiers (PAs) as well as the use of these technologies in mobile broadband wireless communications. Four important aspects of PA design are addressed in this paper. First, we look at class-E PA design equations and provide an example of a class-E PA that achieves efficiency of 65-70% at 2.4 GHz. Then, we discuss state-of-the-art envelope tracking (ET) design for monolithic wideband RF mobile transmitter applications. A brief overview of Doherty PA design for the next-generation wireless handset applications is then given. Towards the end of the paper, we discuss an inherently broadband and highly efficient class-J PA design targeting future multi-band multi-standard wireless communication protocols.
文摘To compensate for nonlinear distortion introduced by RF power amplifiers (PAs) with memory effects, two correlated models, namely an extended memory polynomial (EMP) model and a memory lookup table (LUT) model, are proposed for predistorter design. Two adaptive digital predistortion (ADPD) schemes with indirect learning architecture are presented. One adopts the EMP model and the recursive least square (RLS) algorithm, and the other utilizes the memory LUT model and the least mean square (LMS) algorithm. Simulation results demonstrate that the EMP-based ADPD yields the best linearization performance in terms of suppressing spectral regrowth. It is also shown that the ADPD based on memory LUT makes optimum tradeoff between performance and computational complexity.
基金supported by the National Basic Research Program of China(Grant No.2013CB922404)the National Scientific Research Project of China(Grant No.61177047)the National Natural Science Foundation of China(Grant No.61575011)
文摘We present a nonlinear ytterbium-doped fiber amplifier based on enhanced nonlinear effects that can produce a flat broadband spectrum ranging from 1050–1225 nm with a maximum average output power of 7.8 W at 14 W pump power.Its repetition rate is 89 MHz. Using a pair of gratings and two knife edges as a filter, wavelength tunable picosecond pulses of tens to hundreds of milliwatts can be obtained in the broadband spectrum range. The output power, pulse width, and spectrum(center wavelength and linewidth) are adjusted by tuning the distance of the grating pair and/or the knife edges.Fixing the distance between the two gratings at 15 mm and keeping the output spectrum linewidth at approximately 20 nm,the shortest pulse width obtained is less than 1 ps centered at 1080 nm. The longest wavelength of the short pulses is around1200 nm, and its output power and pulse width are 40 m W and 5.79 ps, respectively. The generation of a flat broadband spectrum is also discussed in this paper.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CB301704)the National Natural Science Foundation for Distinguished Young Scholars (Grant No. 61125501)the National Natural Science Foundation of China (Grant Nos. 60901006 and 11174096)
文摘We propose and demonstrate a scheme to implement photonic multi-shape ultra-wideband(UWB) signal generation using a semiconductor optical amplifier(SOA) based nonlinear optical loop mirror(NOLM).By employing the cross phase modulation(XPM) effect,cross gain modulation(XGM),or both,multi-shape UWB waveforms are generated including monocycle,doublet,triplet,and quadruplet pulses.Both the shapes and polarities of the generated pulses are flexible to adjust,which may be very useful in UWB pulse shape modulation and pulse polarity modulation.
基金Project supported by the New Century Excellent Talents in University, Ministry of Education of China and the Scientific Research Project in National University Defense of Technology
文摘A single-frequency retrievable phase modulated multi-tone fiber amplifier is presented in theory and demonstrated in experiment. A multi-tone seed laser generated by a sine wave phase modulated single-frequency laser is employed for stimulated Brillouin scattering suppression in an all-fiber amplifier. A demodulation signal which is π phase shifted with respect to the modulation signal is used to retrieve the single-frequency laser from the multi-tone laser. In experiment, we first optimize the all-fiber master-oscillator power-amplifier. With this amplifier, we demonstrate a single-frequency retrievable multi-tone laser with 330-W output when driven by the multi-tone seed, while the ultimate output power is only 130 W when driven by the single-frequency laser. Then, we carry out an experiment for retrieving the single-frequency laser from the amplified multi-tone laser. Results indicate that the single-frequency laser can be retrieved with a sideband suppression of more than 20 dB. Retrieving an even higher power single-frequency laser is possible if a high power demodulator is available.
基金supported by the National Basic Research Program of China (Grant No. 2011CB301704)the National Natural Science Foundation of China (Grant No. 60901006)the Fundamental Research Funds for the Central Universities of China (Grant No. 2010QN033)
文摘We theoretically design a power-efficient ultra-wideband pulse generator by combining three monocycle pulses with different weights. We also experimentally demonstrate a feasible scheme to generate such power-efficient ultra-wideband waveforms using cross-phase modulation in a single semiconductor optical amplifier. The designed ultra-wideband pulse fully satisfies the requirements for the spectral mask specified by the Federal Communications Commission with high power efficiency. In the experiment, a power-efficient ultra-wideband waveform with a pulse duration of 310 ps is achieved, and the power efficiency is greatly improved compared with that of a single nlonocycle pulse or a mixture of two monoeycles.