期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adaptive integral dynamic surface control based on fully tuned radial basis function neural network 被引量:2
1
作者 Li Zhou Shumin Fei Changsheng Jiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2010年第6期1072-1078,共7页
An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wid... An adaptive integral dynamic surface control approach based on fully tuned radial basis function neural network (FTRBFNN) is presented for a general class of strict-feedback nonlinear systems,which may possess a wide class of uncertainties that are not linearly parameterized and do not have any prior knowledge of the bounding functions.FTRBFNN is employed to approximate the uncertainty online,and a systematic framework for adaptive controller design is given by dynamic surface control. The control algorithm has two outstanding features,namely,the neural network regulates the weights,width and center of Gaussian function simultaneously,which ensures the control system has perfect ability of restraining different unknown uncertainties and the integral term of tracking error introduced in the control law can eliminate the static error of the closed loop system effectively. As a result,high control precision can be achieved.All signals in the closed loop system can be guaranteed bounded by Lyapunov approach.Finally,simulation results demonstrate the validity of the control approach. 展开更多
关键词 adaptive control integral dynamic surface control fully tuned radial basis function neural network.
在线阅读 下载PDF
Situational continuity-based air combat autonomous maneuvering decision-making 被引量:5
2
作者 Jian-dong Zhang Yi-fei Yu +3 位作者 Li-hui Zheng Qi-ming Yang Guo-qing Shi Yong Wu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第11期66-79,共14页
In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation eval... In order to improve the performance of UAV's autonomous maneuvering decision-making,this paper proposes a decision-making method based on situational continuity.The algorithm in this paper designs a situation evaluation function with strong guidance,then trains the Long Short-Term Memory(LSTM)under the framework of Deep Q Network(DQN)for air combat maneuvering decision-making.Considering the continuity between adjacent situations,the method takes multiple consecutive situations as one input of the neural network.To reflect the difference between adjacent situations,the method takes the difference of situation evaluation value as the reward of reinforcement learning.In different scenarios,the algorithm proposed in this paper is compared with the algorithm based on the Fully Neural Network(FNN)and the algorithm based on statistical principles respectively.The results show that,compared with the FNN algorithm,the algorithm proposed in this paper is more accurate and forwardlooking.Compared with the algorithm based on the statistical principles,the decision-making of the algorithm proposed in this paper is more efficient and its real-time performance is better. 展开更多
关键词 UAV Maneuvering decision-making Situational continuity Long short-term memory(LSTM) Deep Q network(DQN) fully neural network(FNN)
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部