Tibetan Plateau,as one of the most carbon intensive regions in China,is crucial in the carbon cycle,and accurately estimating its vegetation carbon density(C_(VEG))is essential for assessing regional and national carb...Tibetan Plateau,as one of the most carbon intensive regions in China,is crucial in the carbon cycle,and accurately estimating its vegetation carbon density(C_(VEG))is essential for assessing regional and national carbon balance.However,the spatial distribution of regional C_(VEG) is not available remains highly uncertain due to lack of systematic research,especially for different organs.Here,we investigated the spatial distribution patterns and driving factors of C_(VEG) among different plant organs(leaf,branch,trunk and root)by systematically field grid-sampling 2040 field-plots of plant communities over the Tibetan Plateau from 2019 to 2020.The results showed that the carbon content of plant organs ranged from 255.53 to 515.58 g kg^(-1),with the highest in branches and the lowest in roots.Among the different plant functional groups,the highest C_(VEG) was found in evergreen coniferous forests,and the lowest in desert grasslands,with an average C_(VEG) of 1603.98 g m^(-2).C_(VEG) increased spatially from northwest to southeast over the Tibetan Plateau,with MAP being the dominant factor.Furthermore,the total vegetation carbon stock on the Tibetan Plateau was estimated to be 1965.62 Tg for all vegetation types.Based on the comprehensive field survey dataset,the Random Forest model effectively predicted and mapped the spatial distribution of C_(VEG)(including aboveground,belowground,and the total biomass carbon density)over the Tibetan Plateau with notable accuracy(validation R2 values were 71%,56%,and 64%for C_(AGB),C_(BGB),and C_(VEG),respectively)at a spatial resolution of 1 km×1 km.Our findings can help improve the accuracy of regional carbon stock estimations and provide parameters for carbon cycle model optimization and remote sensing calibration in the future.展开更多
Urban vegetation plays a crucial role in regulating temperatures and heat waves in urban areas.However,the influence of vegetation coverage and its configuration on surface temperatures in different climate zones at a...Urban vegetation plays a crucial role in regulating temperatures and heat waves in urban areas.However,the influence of vegetation coverage and its configuration on surface temperatures in different climate zones at a national scale is unclear.To address this,we utilized high-resolution data to detect spatial patterns for 31 provincial capital cities in China.We integrated day and night surface temperatures to determine the influence of vegetative coverage and configuration on urban temperatures across different climate zones and city sizes.Our study revealed that a subtropical monsoon climate and medium-sized cities had the highest vegetative coverage and shape complexity.The best connectivity and agglomeration of vegetation were found in a temperate monsoon climate and large cities.In contrast,small cities,especially those under a temperate continental climate,had low vegetation coverage,high fragmentation,and weak agglomeration and connectivity.In addition,vegetative coverage had a negative impact on daytime surface temperatures,especially in large cities in a subtropical monsoon climate.However,an increase in vegetation coverage could result in warming at night in small cities in temperate continental climates.Although urban vegetation configuration also contributed to moderating surface temperatures,especially at night,they did not surpass the influence of vegetation coverage.The effect on nighttime temperatures of the configuration of vegetation increased by 3–6%relative to that of daytime temperatures,especially in large cities in a temperate monsoon climate.The contribution vegetation coverage and configuration interaction to cooling efficiency decreased at night,especially in medium-sized cities in a temperate continental climate by 3–5%.In addition,this study identified several moderating effects of natural and social factors on the relationship between urban vegetation coverage and surface temperatures.High duration of sunshine,low humidity and high wind speed significantly enhanced the negative impact of vegetation coverage on surface temperatures.In addition,the moderating effect of vegetation coverage was more pronounced in low population density cities and high gross domestic product.This study enhances understanding of the ecological functions of urban vegetation and provides a valuable scientific basis and strategic recommendations for optimizing urban vegetation and improving urban environmental quality.展开更多
A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were deve...A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were developed.The samples were extracted with acetonitrile/acetic acid(99:1,V/V),and clean-up by SinChERS-Nano(single-step,cheap,effective,rugged,safe,nano)column,determined by UPLC-Q-TOF/MS.The accurate mass database and MS/MS database which contains 420 pesticides were established,the automatic retrieval of detection results was carried on according to the accurate mass,retention time,isotope ratio,ion fragment information,and so on.Method verification was performed on leeks samples.The results showed that 420 pesticides had good linearity in the range of 0.1-100μg/L,and the correlation coeffificients(R2)was greater than 0.990.The limits of detections(LODs)and limits of quantifications(LOQs)of 420 pesticides were in range of 0.05-2.0 and 0.1-5.0μg/L,respectively.The average spike recoveries at 3 levels were 70.1%to 119.7%,and the relative standard deviations(RSD)were lower than 20%(n=6).With this method,a survey of pesticide residues was conducted for 110 samples of 10 different fruits and vegetables,which provided scientific data for ensuring pesticide residue safety of the fruits and vegetables consumed daily by the public.This method was simple,sensitive and accurate,and could be used for rapid screening of 420 pesticide residues in fruits and vegetables.展开更多
In the Peninsular Malaysia and Northern Borneo island of Malaysia, various rich indigenous leafy vegetables and fruits grow and contribute to the nutritional and dietary values of the population. They have high water ...In the Peninsular Malaysia and Northern Borneo island of Malaysia, various rich indigenous leafy vegetables and fruits grow and contribute to the nutritional and dietary values of the population. They have high water contents, thus, naturally vulnerable to rapid food spoilage. Food preservation and processing play a vital role in the inhibition of food pathogens in fruits and vegetables that are prevalent in Malaysia. Lactic acid fermentation is generally a local-based bioprocess, among the oldest form and well-known for food-processing techniques among indigenous people there. The long shelf life of fermented vegetables and fruits improves their nutritional values and antioxidant potentials. Fermented leaves and vegetables can be utilized as a potential source of probiotics as they are host for several lactic acid bacteria such as Lactobacillus confusus, Weissella paramesenteroides, Enterococcus faecalis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus paracasei, Lactobacillus pentosus, Pediococcus acidilactici, Pediococcus pentosaceus and Leuconostoc mesenteroides. These strains may be more viable in metabolic systems whereby they can contribute to a substantial increase in essential biologically active element than industrial starter cultures. This review is aimed to address some essential fermented fruits and vegetables in Malaysia and their remarkable reputations as a potential sources of natural probiotics.展开更多
The main toxic component of tetramine is tetramethylenedisulfotetramine(TETS).It is a sulfonamide derivative without special antidote,tasteless and tasteless,with high toxicity and high mortality.[1]It was first disco...The main toxic component of tetramine is tetramethylenedisulfotetramine(TETS).It is a sulfonamide derivative without special antidote,tasteless and tasteless,with high toxicity and high mortality.[1]It was first discovered by a German scientist Hagen in 1949.Although its use has been banned worldwide due to its high toxicity and mortality rate,it is still available in certain countries and has led to cases of intentional and unintentional poisoning.Tetramine blocksγ-neurons,leading to dizziness,fatigue,nausea,vomiting,convulsions,and other symptoms.[2-4]Due to the lack of recognized effective antidotes,many poisoned people suff ocate and die as a result of continuous spasms of the respiratory muscles.[5-7]Tetramine poisoning sometimes occurs,but it is rare for vegetables grown in tetraminecontaminated soil to cause group poisoning after being eaten.展开更多
Vegetable production in the open field involves many tasks,such as soil preparation,ridging,and transplanting/sowing.Different tasks require agricultural machinery equipped with different agricultural tools to meet th...Vegetable production in the open field involves many tasks,such as soil preparation,ridging,and transplanting/sowing.Different tasks require agricultural machinery equipped with different agricultural tools to meet the needs of the operation.Aiming at the coupling multi-task in the intelligent production of vegetables in the open field,the task assignment method for multiple unmanned tractors based on consistency alliance is studied.Firstly,unmanned vegetable production in the open field is abstracted as a multi-task assignment model with constraints of task demand,task sequence,and the distance traveled by an unmanned tractor.The tight time constraints between associated tasks are transformed into time windows.Based on the driving distance of the unmanned tractor and the replacement cost of the tools,an expanded task cost function is innovatively established.The task assignment model of multiple unmanned tractors is optimized by the consensus based bundle algorithm(CBBA)with time windows.Experiments show that the method can effectively solve task conflict in unmanned production and optimize task allocation.A basic model is provided for the cooperative task of multiple unmanned tractors for vegetable production in the open field.展开更多
Rapid detection of target foodborne pathogens plays more and more significant roles in food safety,which requires the efficiency,sensitivity,and accuracy.In this research,we proposed a new st rategy of isothermal-mole...Rapid detection of target foodborne pathogens plays more and more significant roles in food safety,which requires the efficiency,sensitivity,and accuracy.In this research,we proposed a new st rategy of isothermal-molecular-amplification integrated with lateral-flow-strip for rapid detection of Salmonella without traditional enrichment-culture.Th e designed syringe-assisted-filtration can contribute to simultaneous collection and concentration of target bacterium from vegetable samples in just 3 min,resolving the drawbacks of traditional random sampling protocols.After simple and convenient ultrasonication,samples can be directly amplified at 39℃ in 25 min and the amplicons are qualitatively and quantitatively analyzed with the designed lateral-flow-strip in 5 min.Finally,satisfied results have been achieved within 40 min,which greatly improve the efficiency while the accuracy is also guaranteed.Furthermore,all detection steps can be completed under instrument-free conditions.This method will hold great promise for target pathogen detection in the resource-limited district,or for emergency on-site identification.展开更多
Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional pr...Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional processes,and underlying mechanisms of global natural vegetation,particularly in the case of ongoing climate warming.In this study,we visualize the spatio-temporal pattern and inter-transition procedure of global PNV,analyse the shifting distances and directions of global PNV under the influence of climatic disturbance,and explore the mechanisms of global PNV in response to temperature and precipitation fluctuations.To achieve this,we utilize meteorological data,mainly temperature and precipitation,from six phases:the Last Inter-Glacial(LIG),the Last Glacial Maximum(LGM),the Mid Holocene(MH),the Present Day(PD),2030(20212040)and 2090(2081–2100),and employ a widely-accepted comprehensive and sequential classification sy–stem(CSCS)for global PNV classification.We find that the spatial patterns of five PNV groups(forest,shrubland,savanna,grassland and tundra)generally align with their respective ecotopes,although their distributions have shifted due to fluctuating temperature and precipitation.Notably,we observe an unexpected transition between tundra and savanna despite their geographical distance.The shifts in distance and direction of five PNV groups are mainly driven by temperature and precipitation,although there is heterogeneity among these shifts for each group.Indeed,the heterogeneity observed among different global PNV groups suggests that they may possess varying capacities to adjust to and withstand the impacts of changing climate.The spatio-temporal distributions,mutual transitions and shift tendencies of global PNV and its underlying mechanism in face of changing climate,as revealed in this study,can significantly contribute to the development of strategies for mitigating warming and promoting re-vegetation in degraded regions worldwide.展开更多
As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is...As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.展开更多
Vegetation resilience(VR),providing an objective measure of ecosystem health,has received considerable attention,however,there is still limited understanding of whether the dominant factors differ across different cli...Vegetation resilience(VR),providing an objective measure of ecosystem health,has received considerable attention,however,there is still limited understanding of whether the dominant factors differ across different climate zones.We took the three national parks(Hainan Tropical Rainforest National Park,HTR;Wuyishan National Park,WYS;and Northeast Tiger and Leopard National Park,NTL)of China with less human interference as cases,which are distributed in different climatic zones,including tropical,subtropical and temperate monsoon climates,respectively.Then,we employed the probabilistic decay method to explore the spatio-temporal changes in the VR and their natural driving patterns using Geographically Weighted Regression(GWR)model as well.The results revealed that:(1)from 2000 to 2020,the Normalized Difference Vegetation Index(NDVI)of the three national parks fluctuated between 0.800 and 0.960,exhibiting an overall upward trend,with the mean NDVI of NTL(0.923)>HTR(0.899)>WYS(0.823);(2)the positive trend decay time of vegetation exceeded that of negative trend,indicating vegetation gradual recovery of the three national parks since 2012;(3)the VR of HTR was primarily influenced by elevation,aspect,average annual temperature change(AATC),and average annual precipitation change(AAPC);the WYS'VR was mainly affected by elevation,average annual precipitation(AAP),and AAPC;while the terrain factors(elevation and slope)were the main driving factors of VR in NTL;(4)among the main factors influencing the VR changes,the AAPC had the highest proportion in HTR(66.7%),and the AAP occupied the largest area proportion in WYS(80.4%).While in NTL,elevation served as the main driving factor for the VR,encompassing 64.2%of its area.Consequently,our findings indicated that precipitation factors were the main driving force for the VR changes in HTR and WYS national parks,while elevation was the main factors that drove the VR in NTL.Our research has promoted a deeper understanding of the driving mechanism behind the VR.展开更多
Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid ...Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid composition of vegetable oils decides the fate of the oil.Pure single oil is unable to provide a balanced amount of fatty acids(FAs)required/recommended on a daily intake basis.Blending oils/fats is an appropriate procedure of physically mixing multiple oils in suitable proportions which may provide functional lipids with improved antioxidant potential and desirable physical and chemical properties.This review piled up the accessible data on the blending of diverse oils/fats in the combination of binary,ternary,quaternary,or other types of oils into a single blended oil.Blending can be found very convincing towards appropriate FA profile,enhancement in physicochemical characteristics,and augmented stability for the period of storage or when used as cooking/frying processes which could ultimately serve as an effectual dietary intervention towards the health protectiveness.展开更多
Spruce-dominated forests are commonly exposed to disturbances associated with mass occurrences of bark beetles.The dieback of trees triggers many physical and chemical processes in the ecosystem resulting in rapid cha...Spruce-dominated forests are commonly exposed to disturbances associated with mass occurrences of bark beetles.The dieback of trees triggers many physical and chemical processes in the ecosystem resulting in rapid changes in the vegetation of the lower forest layers.We aimed to determine the response of non-tree understory vegetation to the mass dieback of Norway spruce(Picea abies)in the first years after the disturbance caused by the European spruce bark beetle(Ips typographus)outbreak.Our study area was the Białowieża Biosphere Reserve covering the Polish part of the emblematic Białowieża Forest,in total 597km^(2).The main data source comprised 3,900 phytosociological relevés(combined spring and summer campaigns)collected from 1,300 systematically distributed forest sites in 2016–2018–the peak years of the bark beetle outbreak.We found that the understory responded immediately to mass spruce dieback,with the most pronounced changes observed in the year of the disturbance and the subsequent year.Shade-tolerant forest species declined in the initial years following the mass spruce dieback,while hemicryptophytes,therophytes,light-demanding species associated with non-forest seminatural communities,as well as water-demanding forest species,expanded.Oxalis acetosella,the most common understory species in the Białowieża Forest,showed a distinct fluctuation pattern,with strong short-term expansion right after spruce dieback,followed by a gradual decline over the next 3–4 years to a cover level 5 percentage points lower than before the disturbance.Thus,our study revealed that mass spruce dieback selectively affects individual herb species,and their responses can be directional and non-directional(fluctuation).Furthermore,we demonstrated that the mass dieback of spruce temporarily increases plant species diversity(α-diversity).展开更多
基金supported by CAS Project for Young Scientists in Basic Research(YSBR-037)the National Natural Science Foundation of China(42141004,32430067)by the Second Tibetan Plateau Scientific Expedition and Research Program(STEP,2019QZKK060602).
文摘Tibetan Plateau,as one of the most carbon intensive regions in China,is crucial in the carbon cycle,and accurately estimating its vegetation carbon density(C_(VEG))is essential for assessing regional and national carbon balance.However,the spatial distribution of regional C_(VEG) is not available remains highly uncertain due to lack of systematic research,especially for different organs.Here,we investigated the spatial distribution patterns and driving factors of C_(VEG) among different plant organs(leaf,branch,trunk and root)by systematically field grid-sampling 2040 field-plots of plant communities over the Tibetan Plateau from 2019 to 2020.The results showed that the carbon content of plant organs ranged from 255.53 to 515.58 g kg^(-1),with the highest in branches and the lowest in roots.Among the different plant functional groups,the highest C_(VEG) was found in evergreen coniferous forests,and the lowest in desert grasslands,with an average C_(VEG) of 1603.98 g m^(-2).C_(VEG) increased spatially from northwest to southeast over the Tibetan Plateau,with MAP being the dominant factor.Furthermore,the total vegetation carbon stock on the Tibetan Plateau was estimated to be 1965.62 Tg for all vegetation types.Based on the comprehensive field survey dataset,the Random Forest model effectively predicted and mapped the spatial distribution of C_(VEG)(including aboveground,belowground,and the total biomass carbon density)over the Tibetan Plateau with notable accuracy(validation R2 values were 71%,56%,and 64%for C_(AGB),C_(BGB),and C_(VEG),respectively)at a spatial resolution of 1 km×1 km.Our findings can help improve the accuracy of regional carbon stock estimations and provide parameters for carbon cycle model optimization and remote sensing calibration in the future.
基金supported by the National Natural Science Foundation of China(42171109,32130068)the Youth Innovation Promotion Association of Chinese Academy of Sciences(2020237)National Key R&D Program of China(2023YFF1304604).
文摘Urban vegetation plays a crucial role in regulating temperatures and heat waves in urban areas.However,the influence of vegetation coverage and its configuration on surface temperatures in different climate zones at a national scale is unclear.To address this,we utilized high-resolution data to detect spatial patterns for 31 provincial capital cities in China.We integrated day and night surface temperatures to determine the influence of vegetative coverage and configuration on urban temperatures across different climate zones and city sizes.Our study revealed that a subtropical monsoon climate and medium-sized cities had the highest vegetative coverage and shape complexity.The best connectivity and agglomeration of vegetation were found in a temperate monsoon climate and large cities.In contrast,small cities,especially those under a temperate continental climate,had low vegetation coverage,high fragmentation,and weak agglomeration and connectivity.In addition,vegetative coverage had a negative impact on daytime surface temperatures,especially in large cities in a subtropical monsoon climate.However,an increase in vegetation coverage could result in warming at night in small cities in temperate continental climates.Although urban vegetation configuration also contributed to moderating surface temperatures,especially at night,they did not surpass the influence of vegetation coverage.The effect on nighttime temperatures of the configuration of vegetation increased by 3–6%relative to that of daytime temperatures,especially in large cities in a temperate monsoon climate.The contribution vegetation coverage and configuration interaction to cooling efficiency decreased at night,especially in medium-sized cities in a temperate continental climate by 3–5%.In addition,this study identified several moderating effects of natural and social factors on the relationship between urban vegetation coverage and surface temperatures.High duration of sunshine,low humidity and high wind speed significantly enhanced the negative impact of vegetation coverage on surface temperatures.In addition,the moderating effect of vegetation coverage was more pronounced in low population density cities and high gross domestic product.This study enhances understanding of the ecological functions of urban vegetation and provides a valuable scientific basis and strategic recommendations for optimizing urban vegetation and improving urban environmental quality.
基金supported by National Key Research and Development Program of China(2018YFC1603400)Special Technical Support Project of State Administration for Market Regulation(2019YJ009).
文摘A new method for screening and identification 420 pesticide residues in fruits and vegetables by ultra-performance liquid chromatography coupled with quadrupole-time of flight mass spectrometry(UPLC-Q-TOF/MS)were developed.The samples were extracted with acetonitrile/acetic acid(99:1,V/V),and clean-up by SinChERS-Nano(single-step,cheap,effective,rugged,safe,nano)column,determined by UPLC-Q-TOF/MS.The accurate mass database and MS/MS database which contains 420 pesticides were established,the automatic retrieval of detection results was carried on according to the accurate mass,retention time,isotope ratio,ion fragment information,and so on.Method verification was performed on leeks samples.The results showed that 420 pesticides had good linearity in the range of 0.1-100μg/L,and the correlation coeffificients(R2)was greater than 0.990.The limits of detections(LODs)and limits of quantifications(LOQs)of 420 pesticides were in range of 0.05-2.0 and 0.1-5.0μg/L,respectively.The average spike recoveries at 3 levels were 70.1%to 119.7%,and the relative standard deviations(RSD)were lower than 20%(n=6).With this method,a survey of pesticide residues was conducted for 110 samples of 10 different fruits and vegetables,which provided scientific data for ensuring pesticide residue safety of the fruits and vegetables consumed daily by the public.This method was simple,sensitive and accurate,and could be used for rapid screening of 420 pesticide residues in fruits and vegetables.
基金Universiti Malaysia Sarawak for the support of this research。
文摘In the Peninsular Malaysia and Northern Borneo island of Malaysia, various rich indigenous leafy vegetables and fruits grow and contribute to the nutritional and dietary values of the population. They have high water contents, thus, naturally vulnerable to rapid food spoilage. Food preservation and processing play a vital role in the inhibition of food pathogens in fruits and vegetables that are prevalent in Malaysia. Lactic acid fermentation is generally a local-based bioprocess, among the oldest form and well-known for food-processing techniques among indigenous people there. The long shelf life of fermented vegetables and fruits improves their nutritional values and antioxidant potentials. Fermented leaves and vegetables can be utilized as a potential source of probiotics as they are host for several lactic acid bacteria such as Lactobacillus confusus, Weissella paramesenteroides, Enterococcus faecalis, Lactobacillus plantarum, Lactobacillus buchneri, Lactobacillus paracasei, Lactobacillus pentosus, Pediococcus acidilactici, Pediococcus pentosaceus and Leuconostoc mesenteroides. These strains may be more viable in metabolic systems whereby they can contribute to a substantial increase in essential biologically active element than industrial starter cultures. This review is aimed to address some essential fermented fruits and vegetables in Malaysia and their remarkable reputations as a potential sources of natural probiotics.
基金supported by a grant from the National Key R&D Program of China(2019YFC16063000).
文摘The main toxic component of tetramine is tetramethylenedisulfotetramine(TETS).It is a sulfonamide derivative without special antidote,tasteless and tasteless,with high toxicity and high mortality.[1]It was first discovered by a German scientist Hagen in 1949.Although its use has been banned worldwide due to its high toxicity and mortality rate,it is still available in certain countries and has led to cases of intentional and unintentional poisoning.Tetramine blocksγ-neurons,leading to dizziness,fatigue,nausea,vomiting,convulsions,and other symptoms.[2-4]Due to the lack of recognized effective antidotes,many poisoned people suff ocate and die as a result of continuous spasms of the respiratory muscles.[5-7]Tetramine poisoning sometimes occurs,but it is rare for vegetables grown in tetraminecontaminated soil to cause group poisoning after being eaten.
基金supported by the Science and Technology Innovation 2030-“New Generation Artificial Intelligence”Major Project(No.2021ZD0113604)China Agriculture Research System of MOF and MARA(No.CARS-23-D07)。
文摘Vegetable production in the open field involves many tasks,such as soil preparation,ridging,and transplanting/sowing.Different tasks require agricultural machinery equipped with different agricultural tools to meet the needs of the operation.Aiming at the coupling multi-task in the intelligent production of vegetables in the open field,the task assignment method for multiple unmanned tractors based on consistency alliance is studied.Firstly,unmanned vegetable production in the open field is abstracted as a multi-task assignment model with constraints of task demand,task sequence,and the distance traveled by an unmanned tractor.The tight time constraints between associated tasks are transformed into time windows.Based on the driving distance of the unmanned tractor and the replacement cost of the tools,an expanded task cost function is innovatively established.The task assignment model of multiple unmanned tractors is optimized by the consensus based bundle algorithm(CBBA)with time windows.Experiments show that the method can effectively solve task conflict in unmanned production and optimize task allocation.A basic model is provided for the cooperative task of multiple unmanned tractors for vegetable production in the open field.
基金financially supported by the grants of the NSFC(32172295,21804028)the key R&D program of Anhui(201904d07020016)+5 种基金the Anhui Provincial NSF(1908085QC121)the Fundamental Research Fund for central university(JZ2019HGTB0068)the China Postdoctoral Science Foundation(2019M652167)the Fund of State Key Lab of Chemo/Biosensing and Chemometrics(Hunan University),the postdoc grant of Anhui(2020B412)Young and Middle-aged Leading Scientists,Engineers and Innovators of the XPCC(2019CB017)China Agriculture Research System-48(CARS-48).
文摘Rapid detection of target foodborne pathogens plays more and more significant roles in food safety,which requires the efficiency,sensitivity,and accuracy.In this research,we proposed a new st rategy of isothermal-molecular-amplification integrated with lateral-flow-strip for rapid detection of Salmonella without traditional enrichment-culture.Th e designed syringe-assisted-filtration can contribute to simultaneous collection and concentration of target bacterium from vegetable samples in just 3 min,resolving the drawbacks of traditional random sampling protocols.After simple and convenient ultrasonication,samples can be directly amplified at 39℃ in 25 min and the amplicons are qualitatively and quantitatively analyzed with the designed lateral-flow-strip in 5 min.Finally,satisfied results have been achieved within 40 min,which greatly improve the efficiency while the accuracy is also guaranteed.Furthermore,all detection steps can be completed under instrument-free conditions.This method will hold great promise for target pathogen detection in the resource-limited district,or for emergency on-site identification.
基金funded by the National Natural Science Foundation of China(grants No.30960264,31160475 and 42071258)Open Research Fund of TPESER(grant No.TPESER202208)+2 种基金Special Fund for Basic Scientific Research of Central Colleges,Chang’an University,China(grant No.300102353501)Natural Science Foundation of Gansu Province,China(grant No.22JR5RA857)Higher Education Novel Foundation of Gansu Province,China(grant No.2021B-130)。
文摘Potential natural vegetation(PNV)is a valuable reference for ecosystem renovation and has garnered increasing attention worldwide.However,there is limited knowledge on the spatio-temporal distributions,transitional processes,and underlying mechanisms of global natural vegetation,particularly in the case of ongoing climate warming.In this study,we visualize the spatio-temporal pattern and inter-transition procedure of global PNV,analyse the shifting distances and directions of global PNV under the influence of climatic disturbance,and explore the mechanisms of global PNV in response to temperature and precipitation fluctuations.To achieve this,we utilize meteorological data,mainly temperature and precipitation,from six phases:the Last Inter-Glacial(LIG),the Last Glacial Maximum(LGM),the Mid Holocene(MH),the Present Day(PD),2030(20212040)and 2090(2081–2100),and employ a widely-accepted comprehensive and sequential classification sy–stem(CSCS)for global PNV classification.We find that the spatial patterns of five PNV groups(forest,shrubland,savanna,grassland and tundra)generally align with their respective ecotopes,although their distributions have shifted due to fluctuating temperature and precipitation.Notably,we observe an unexpected transition between tundra and savanna despite their geographical distance.The shifts in distance and direction of five PNV groups are mainly driven by temperature and precipitation,although there is heterogeneity among these shifts for each group.Indeed,the heterogeneity observed among different global PNV groups suggests that they may possess varying capacities to adjust to and withstand the impacts of changing climate.The spatio-temporal distributions,mutual transitions and shift tendencies of global PNV and its underlying mechanism in face of changing climate,as revealed in this study,can significantly contribute to the development of strategies for mitigating warming and promoting re-vegetation in degraded regions worldwide.
基金the National Natural Science Foundation of China(32201338)Science Technology Program from the Forestry Administration of Guangdong Province(2021KJCX017)+1 种基金Guangzhou Municipal Science and Technology Bureau Program(2023A04J0086)Shenzhen Key Laboratory of Southern Subtropical Plant Diversity。
文摘As a crucial component of terrestrial ecosystems,urban forests play a pivotal role in protecting urban biodiversity by providing suitable habitats for acoustic spaces.Previous studies note that vegetation structure is a key factor influencing bird sounds in urban forests;hence,adjusting the frequency composition may be a strategy for birds to avoid anthropogenic noise to mask their songs.However,it is unknown whether the response mechanisms of bird vocalizations to vegetation structure remain consistent despite being impacted by anthropogenic noise.It was hypothesized that anthropogenic noise in urban forests occupies the low-frequency space of bird songs,leading to a possible reshaping of the acoustic niches of forests,and the vegetation structure of urban forests is the critical factor that shapes the acoustic space for bird vocalization.Passive acoustic monitoring in various urban forests was used to monitor natural and anthropogenic noises,and sounds were classified into three acoustic scenes(bird sounds,human sounds,and bird-human sounds)to determine interconnections between bird sounds,anthropogenic noise,and vegetation structure.Anthropogenic noise altered the acoustic niche of urban forests by intruding into the low-frequency space used by birds,and vegetation structures related to volume(trunk volume and branch volume)and density(number of branches and leaf area index)significantly impact the diversity of bird sounds.Our findings indicate that the response to low and high frequency signals to vegetation structure is distinct.By clarifying this relationship,our results contribute to understanding of how vegetation structure influences bird sounds in urban forests impacted by anthropogenic noise.
基金the National Natural Science Foundation of China(grant no.31971639)the Natural Science Foundation of Fujian Province(grant no.2023J01477)the Special Investigation on Science and Technology Infrastructure Resources(grant no.2019FY202108)for their support of this research。
文摘Vegetation resilience(VR),providing an objective measure of ecosystem health,has received considerable attention,however,there is still limited understanding of whether the dominant factors differ across different climate zones.We took the three national parks(Hainan Tropical Rainforest National Park,HTR;Wuyishan National Park,WYS;and Northeast Tiger and Leopard National Park,NTL)of China with less human interference as cases,which are distributed in different climatic zones,including tropical,subtropical and temperate monsoon climates,respectively.Then,we employed the probabilistic decay method to explore the spatio-temporal changes in the VR and their natural driving patterns using Geographically Weighted Regression(GWR)model as well.The results revealed that:(1)from 2000 to 2020,the Normalized Difference Vegetation Index(NDVI)of the three national parks fluctuated between 0.800 and 0.960,exhibiting an overall upward trend,with the mean NDVI of NTL(0.923)>HTR(0.899)>WYS(0.823);(2)the positive trend decay time of vegetation exceeded that of negative trend,indicating vegetation gradual recovery of the three national parks since 2012;(3)the VR of HTR was primarily influenced by elevation,aspect,average annual temperature change(AATC),and average annual precipitation change(AAPC);the WYS'VR was mainly affected by elevation,average annual precipitation(AAP),and AAPC;while the terrain factors(elevation and slope)were the main driving factors of VR in NTL;(4)among the main factors influencing the VR changes,the AAPC had the highest proportion in HTR(66.7%),and the AAP occupied the largest area proportion in WYS(80.4%).While in NTL,elevation served as the main driving factor for the VR,encompassing 64.2%of its area.Consequently,our findings indicated that precipitation factors were the main driving force for the VR changes in HTR and WYS national parks,while elevation was the main factors that drove the VR in NTL.Our research has promoted a deeper understanding of the driving mechanism behind the VR.
基金the National Centre of Excellence in Analytical Chemistry,University of Sindh,Jamshoro,Pakistan,for providing financial support to carry out this work.
文摘Oil blending is the method of choice used worldwide to improve oxidative stability and nutritional value.There is no such edible oil/fat that meets all the recommendations from the health point of view.The fatty acid composition of vegetable oils decides the fate of the oil.Pure single oil is unable to provide a balanced amount of fatty acids(FAs)required/recommended on a daily intake basis.Blending oils/fats is an appropriate procedure of physically mixing multiple oils in suitable proportions which may provide functional lipids with improved antioxidant potential and desirable physical and chemical properties.This review piled up the accessible data on the blending of diverse oils/fats in the combination of binary,ternary,quaternary,or other types of oils into a single blended oil.Blending can be found very convincing towards appropriate FA profile,enhancement in physicochemical characteristics,and augmented stability for the period of storage or when used as cooking/frying processes which could ultimately serve as an effectual dietary intervention towards the health protectiveness.
文摘Spruce-dominated forests are commonly exposed to disturbances associated with mass occurrences of bark beetles.The dieback of trees triggers many physical and chemical processes in the ecosystem resulting in rapid changes in the vegetation of the lower forest layers.We aimed to determine the response of non-tree understory vegetation to the mass dieback of Norway spruce(Picea abies)in the first years after the disturbance caused by the European spruce bark beetle(Ips typographus)outbreak.Our study area was the Białowieża Biosphere Reserve covering the Polish part of the emblematic Białowieża Forest,in total 597km^(2).The main data source comprised 3,900 phytosociological relevés(combined spring and summer campaigns)collected from 1,300 systematically distributed forest sites in 2016–2018–the peak years of the bark beetle outbreak.We found that the understory responded immediately to mass spruce dieback,with the most pronounced changes observed in the year of the disturbance and the subsequent year.Shade-tolerant forest species declined in the initial years following the mass spruce dieback,while hemicryptophytes,therophytes,light-demanding species associated with non-forest seminatural communities,as well as water-demanding forest species,expanded.Oxalis acetosella,the most common understory species in the Białowieża Forest,showed a distinct fluctuation pattern,with strong short-term expansion right after spruce dieback,followed by a gradual decline over the next 3–4 years to a cover level 5 percentage points lower than before the disturbance.Thus,our study revealed that mass spruce dieback selectively affects individual herb species,and their responses can be directional and non-directional(fluctuation).Furthermore,we demonstrated that the mass dieback of spruce temporarily increases plant species diversity(α-diversity).