To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox,...To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox, a timing metric related to TSC scheme is put forward and examined. The specific method to select a threshold value provides more precise detection results, which can be shown by performance comparison between the two schemes through Monte Carlo simulation. Taking IEEE 802.1 la WLAN standard as an example, the proposed approach is superior to the most popular Schmidl scheme in terms of BER.展开更多
Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed ...Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.展开更多
The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and t...The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.展开更多
The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency...The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency offset values and the number of OFDM symbols,a novel fractional frequency offset blind estimation scheme based on EKF for OFDM systems is conceived.The nonlinear function of the frequency offset is calculated by employing the correlation.And then the frequency offset is estimated by means of the iterative algorithm of EKF.The finally fractional frequency offset is estimated by adopting repeated the above process.Simulation results demonstrate that the proposed scheme is robust to the frequency offset values without any requirements of a prior knowledge.展开更多
In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research...In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications.展开更多
A closed form expression for the bit error rate (BER) performance of frequency domaindifferential demodulation(FDDD) for orthogonal frequency division multiplexing system in flat fadingchannel is derived.The performan...A closed form expression for the bit error rate (BER) performance of frequency domaindifferential demodulation(FDDD) for orthogonal frequency division multiplexing system in flat fadingchannel is derived.The performance is evaluated by computer simulation and compared with the timedomain differential demodulation(TDDD).The results indicate that the performance of FDDD is betterthan that of TDDD,and the lower band of BER in the former is lower than that of the latter.展开更多
This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst inte...This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.展开更多
Visible light communications(VLC)is considered as an effective supplement technology for next-generation(6G)communications due to its abundant spectrum,high power efficiency and easy deployment.Optical orthogonal freq...Visible light communications(VLC)is considered as an effective supplement technology for next-generation(6G)communications due to its abundant spectrum,high power efficiency and easy deployment.Optical orthogonal frequency division multiplexing(O-OFDM)is a common technology to obtain further promotion.In this paper,two typical O-OFDM schemes direct current biased O-OFDM(DCO-OFDM)and asymmetrically clipped O-OFDM(ACO-OFDM)are analyzed in terms of signal clipping at both transmitter and receiver under the constraints of maximum optical power and non-negative optical power.And effective electrical SNR models after signal clipping are proposed and verified by link simulation.Then a noise cancellation scheme is proposed based on received signal clipping and is proved to bring a significant gain for ACO-OFDM.By system simulation,we find that under a certain optical power limitation,most users can achieve above 4 Gbps in indoor scenario when modulation bandwidth of the light emit diode(LED)or laser diode(LD)is 1 GHz.Therefore,it can be expected that the throughput could reach tens Gbps when the LED/LD modulation bandwidth is increased and multiple LEDs/LDs are deployed.展开更多
Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superp...Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.展开更多
Unmanned aerial vehicles(UAVs)have attracted growing research interests in recent years,which can be used as cost-effective aerial platforms to transmit collected data packets to ground access points(APs).Thus,it is c...Unmanned aerial vehicles(UAVs)have attracted growing research interests in recent years,which can be used as cost-effective aerial platforms to transmit collected data packets to ground access points(APs).Thus,it is crucial to investigate robust airto-ground(A2G)wireless links for high-speed UAVs.However,the A2G wireless link is unstable as it suffers from large path-loss and severe Doppler effect due to the high mobility of UAVs.In order to meet these challenges,we propose an orthogonal time frequency space(OTFS)-based UAV communication system to relief the Doppler effect.Besides,considering that the energy of UAV is limited,we optimize the trajectory planning of UAV to minimize the energy consumption under the constraints of bit error rate(BER)and transmission rate,where the Doppler compensation is taken into account.Simulation results show that the performance of OTFS-based UAV system is superior to orthogonal frequency division multiplexing(OFDM)-based UAV systems,which can accomplish transmission tasks over shorter distances with lower energy consumption.展开更多
Modulation techniques for light fidelity (Li-Fi) are reviewed in this paper. Li-Fi is the fully networked solution for nmltiple users that combines communication and illumination simultaneously. Light emitting diod...Modulation techniques for light fidelity (Li-Fi) are reviewed in this paper. Li-Fi is the fully networked solution for nmltiple users that combines communication and illumination simultaneously. Light emitting diodes (LEDs) are used in Li-Fi as visible light transmitters, therefore, only intensity modulated direct detected modulation techniques can be achieved. Single carrier modulation techniques are straightforward to be used in Li-Fi, however, computationally complex equalization processes are required in fre- quency selective Li-Fi channels. On the other hand, multiearrier modulation techniques offer a viable solution for Li-Fi in terms of power, spectral and computational efficiency. In particular, orthogonal frequency division multiplexing (OFDM) based modulation techniques offer a practical solution for Li-Fi, especially when direct current (DC) wander, and adaptive bit and power loading techniques are considered. Li-Fi modulation techniques need to also satisfy illumination requirements. Flickering avoidance and dimming control are considered in the variant modulation techniques presented. This paper surveys the suitable modulation techniques for Li-Fi including those which explore time, frequency and colour domains.展开更多
Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5...Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.展开更多
This paper addresses the problem of channel estimation in 5G-enabled vehicular-to-vehicular(V2V) channels with high-mobility environments and non-stationary feature. Considering orthogonal frequency division multiplex...This paper addresses the problem of channel estimation in 5G-enabled vehicular-to-vehicular(V2V) channels with high-mobility environments and non-stationary feature. Considering orthogonal frequency division multiplexing(OFDM) system, we perform extended Kalman filter(EKF) for channel estimation in conjunction with Iterative Detector & Decoder(IDD) at the receiver to improve the estimation accuracy. The EKF is proposed for jointly estimating the channel frequency response and the time-varying time correlation coefficients. And the IDD structure is adopted to reduce the estimation errors in EKF. The simulation results show that, compared with traditional methods, the proposed method effectively promotes the system performance.展开更多
A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion mo...A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion model (BEM) of the channel, the joint-sparsity of MIMO-OFDM channels is described. The sparse characteristics enable us to cast the channel estimation as a distributed compressed sensing (DCS) problem. Then, a low complexity DCS-based estimation scheme is designed. Compared with the conventional compressed channel estimators based on the compressed sensing (CS) theory, the DCS-based method has an improved efficiency because it reconstructs the MIMO channels jointly rather than addresses them separately. Furthermore, the group-sparse structure of each single channel is also depicted. To effectively use this additional structure of the sparsity pattern, the DCS algorithm is modified. The modified algorithm can further enhance the estimation performance. Simulation results demonstrate the superiority of our method over fast fading channels in MIMO-OFDM systems.展开更多
A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) p...A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) performance using optimal training pilots is also given, which proves the method can improve the estimation precision greatly in sparse channel.. Since such method needs the multi-path time delays information of the channel, the probabilistic data association (PDA) method is employed to estimate the time delay of each path. Simulation results show that both the bit error rate (BER) and the MSE performance of the proposed method are better than the traditional LS channel estimation method.展开更多
In the current multi-carrier communications,Orthogonal Frequency Division Multiplexing(OFDM)is widely considered as a leading technology.For mobile applications,however,the orthogonality between subcarriers is deterio...In the current multi-carrier communications,Orthogonal Frequency Division Multiplexing(OFDM)is widely considered as a leading technology.For mobile applications,however,the orthogonality between subcarriers is deteriorated by Doppler frequency shift,which will introduce serious subcarrier phase rotation in the received signals and degrade the system performance.Thus,a method of differential grouping weighted symmetry data-conjugate(DWSCC)have been previously presented to obtain a better inter-carrier interference(ICI)suppressing effect and Bit Error Rate(BER)performance with no loss of spectral efficiency.In this paper,a novel scheme applying a completely different method of subcarrier interactive mapping is put forward.By mapping two different symbols which are both conjugated or multiplied by a complex weighting factor onto a pair of symmetric subcarriers,the presented scheme can greatly reduce the influence of subcarriers phase rotation caused by Doppler frequency shift in highly mobile environments.Analysis and simulation results indicate that comparing with the DWSCC method,our formulated scheme can not only maintain the spectrum utilization with no loss,but also have the advantages of an improvement on reduction effect and BER performance as well as a lower computational complexity in highly mobile environments.展开更多
In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multipl...In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multiplexing systems. During the SCR procedure, only the element with the maximal amplitude is picked for processing, which not only decreases the algorithm complexity, but also helps to overcome the BER deterioration. With the LSA method, the amplitude of the peak-cancelling signals can approximate to that of the original clipping noise as much as possible. Through the combination of the optimization factor in the LSA method, the classic SCR method can achieve better PAPR reduction with faster convergence. Simulation results show that the proposed SCR-LSA TR scheme has less in-band distortion and smaller out-of-band spectral radiation. The BER of the proposed scheme shows a better performance especially under the 16-QAM over the additive white Gaussian noise channel.展开更多
A novel channel estimation algorithm is presented in this paper for the recently proposed cyclic postfix based on orthogonal frequency division multiplexing (OFDM) systems. Phase equalization with the erasure decisi...A novel channel estimation algorithm is presented in this paper for the recently proposed cyclic postfix based on orthogonal frequency division multiplexing (OFDM) systems. Phase equalization with the erasure decision is used to reduce both the channel estimation error and the computational complexity. Simulation results show that the proposed channel estimation algorithm can effectively estimate the channel impulse response (CIR) and the performance of the proposed phase equalization with erasure decision is comparable with the minimal mean square error (MMSE) equalization, but it offers less computational complexity.展开更多
100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission...100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission systems have been discussed.It is demonstrated that optical OFDM can be used in future 100 Gb/s/ch and long-haul system.展开更多
A new channel estimation method for orthogonal frequency division multiplexing (OFDM) system with large subcarriers and serious intercarrier interference (ICI) is proposed. The channel frequency-domain ( CFD ) m...A new channel estimation method for orthogonal frequency division multiplexing (OFDM) system with large subcarriers and serious intercarrier interference (ICI) is proposed. The channel frequency-domain ( CFD ) matrix of each delay path is factorized to the product of a diagonal delay matrix and a circular ICI matrix in this model. To reduce the coefficient number, the circular ICI ma- trix is squeezed by using Hamming-window as the reshaping pulse in the transmitter. Meanwhile, the elements of the diagonal delay matrix are approximated with a discrete prolate spheroidal basis ex- pansion model (DPS-BEM). A least-square (LS) estimator is used to estimate the reduced channel coefficients. The proposed method is theoretically derived and simulated. The simulation results in- dicate that the model has good performance and is appropriate for various channel environments. The method also has low complexity and good spectral efficiency.展开更多
文摘To improve frame synchronization precision, a scheme named training symbol correlation (TSC) is presented for orthogonal frequency division multiplexing ( OFDM ) system. Based on the solution from Schmidl and Cox, a timing metric related to TSC scheme is put forward and examined. The specific method to select a threshold value provides more precise detection results, which can be shown by performance comparison between the two schemes through Monte Carlo simulation. Taking IEEE 802.1 la WLAN standard as an example, the proposed approach is superior to the most popular Schmidl scheme in terms of BER.
文摘Multiband orthogonal frequency division multiplexing (MB-OFDM) ultra wide-band (UWB) is a novel wireless communication technology. It has many advantages and is being actively researhed. In this study, we constructed and implemented a simulation model of UWB communication systems in Simulink. We found the MB-OFDM UWB system has the best performance in distance between 4 m to 10 m without the line-of-sight requirement.
基金Supported by the National High Technology Research and Development Program of China (2009AA093601-2)the National Defense Foundation Research (B2420110007)
文摘The major constraint on the performance of orthogonal frequency division multiplexing (OFDM) based underwater acoustic (UWA) communication is to keep subcarriers orthogonal. In this paper, Doppler estimation and the respective compensation technique along with various diversity techniques were deliberated for OFDM-based systems best suited for underwater wireless information exchange. In practice, for mobile communication, adjustment and tuning of transducers in order to get spatial diversity is extremely difficult. Considering the relatively low coherence bandwidth in UWA, the frequency diversity design with the Doppler compensation function was elaborated here. The outfield experiments of mobile underwater acoustic communication (UWAC) based on OFDM were carried out with 0.17 bit/(s-Hz) spectral efficiency. The validity and the dependability of the scheme were also analyzed.
基金supported by the National Natural Science Foundation of China under Grant No.61501348 and 61271299China Postdoctoral Science Foundation funded project under Grant No.2014M562372+1 种基金Natural Science Basic Research Plan in Shaanxi Province of China under Grant No.2016JQ6039the 111 Project under Grant No.B08038
文摘The traditional fractional frequency offset(FFO) estimation schemes for orthogonal frequency division multiplexing(OFDM) in non-cooperative communication have the problems of susceptible performance with the frequency offset values and the number of OFDM symbols,a novel fractional frequency offset blind estimation scheme based on EKF for OFDM systems is conceived.The nonlinear function of the frequency offset is calculated by employing the correlation.And then the frequency offset is estimated by means of the iterative algorithm of EKF.The finally fractional frequency offset is estimated by adopting repeated the above process.Simulation results demonstrate that the proposed scheme is robust to the frequency offset values without any requirements of a prior knowledge.
基金supported by the National Natural Science Foundation of China under Grant No. 61501084。
文摘In recent years,the time-frequency overlapping multi-carrier signal has been a novel and valuable topic in blind signal processing,especially in the non-cooperative receiving field.But there is little related research in public published papers.This paper proposes two timing estimation algorithms,which are non-data-aided and based on the cyclic auto-correlation function.In order to evaluate the performance of the proposed algorithms,the theoretical bound of the timing estimation is derived.According to the analyses and simulation results,the effectiveness of the proposed algorithms has been demonstrated.It shows that MethodⅠhas better performance than MethodⅡ.However,MethodⅡdoes not need prior information,so it has a wider range of applications.
基金Supported by National Natural Science Foundation of China(No.60272009)and National 863 Plan Project(NO.2001AA1230131)
文摘A closed form expression for the bit error rate (BER) performance of frequency domaindifferential demodulation(FDDD) for orthogonal frequency division multiplexing system in flat fadingchannel is derived.The performance is evaluated by computer simulation and compared with the timedomain differential demodulation(TDDD).The results indicate that the performance of FDDD is betterthan that of TDDD,and the lower band of BER in the former is lower than that of the latter.
基金supported by the National Key Laboratory of Wireless Communications Foundation,China (IFN20230204)。
文摘This paper investigates the fundamental data detection problem with burst interference in massive multiple-input multiple-output orthogonal frequency division multiplexing(MIMO-OFDM) systems. In particular, burst interference may occur only on data symbols but not on pilot symbols, which means that interference information cannot be premeasured. To cancel the burst interference, we first revisit the uplink multi-user system and develop a matrixform system model, where the covariance pattern and the low-rank property of the interference matrix is discussed. Then, we propose a turbo message passing based burst interference cancellation(TMP-BIC) algorithm to solve the data detection problem, where the constellation information of target data is fully exploited to refine its estimate. Furthermore, in the TMP-BIC algorithm, we design one module to cope with the interference matrix by exploiting its lowrank property. Numerical results demonstrate that the proposed algorithm can effectively mitigate the adverse effects of burst interference and approach the interference-free bound.
文摘Visible light communications(VLC)is considered as an effective supplement technology for next-generation(6G)communications due to its abundant spectrum,high power efficiency and easy deployment.Optical orthogonal frequency division multiplexing(O-OFDM)is a common technology to obtain further promotion.In this paper,two typical O-OFDM schemes direct current biased O-OFDM(DCO-OFDM)and asymmetrically clipped O-OFDM(ACO-OFDM)are analyzed in terms of signal clipping at both transmitter and receiver under the constraints of maximum optical power and non-negative optical power.And effective electrical SNR models after signal clipping are proposed and verified by link simulation.Then a noise cancellation scheme is proposed based on received signal clipping and is proved to bring a significant gain for ACO-OFDM.By system simulation,we find that under a certain optical power limitation,most users can achieve above 4 Gbps in indoor scenario when modulation bandwidth of the light emit diode(LED)or laser diode(LD)is 1 GHz.Therefore,it can be expected that the throughput could reach tens Gbps when the LED/LD modulation bandwidth is increased and multiple LEDs/LDs are deployed.
基金financial support of Natural Science Foundation of China(No.61971102,62132004)MOST Major Research and Development Project(No.2021YFB2900204)+1 种基金Sichuan Science and Technology Program(No.2022YFH0022)Key Research and Development Program of Zhejiang Province(No.2022C01093)。
文摘Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.
基金supported by the National Key Research and Development Program of China(Grant 2020YFB1804800)the National Natural Science Foundation of China(Grant U22B2008 and Grant 61922010)the Beijing Natural Science Foundation(Grant JQ20019)。
文摘Unmanned aerial vehicles(UAVs)have attracted growing research interests in recent years,which can be used as cost-effective aerial platforms to transmit collected data packets to ground access points(APs).Thus,it is crucial to investigate robust airto-ground(A2G)wireless links for high-speed UAVs.However,the A2G wireless link is unstable as it suffers from large path-loss and severe Doppler effect due to the high mobility of UAVs.In order to meet these challenges,we propose an orthogonal time frequency space(OTFS)-based UAV communication system to relief the Doppler effect.Besides,considering that the energy of UAV is limited,we optimize the trajectory planning of UAV to minimize the energy consumption under the constraints of bit error rate(BER)and transmission rate,where the Doppler compensation is taken into account.Simulation results show that the performance of OTFS-based UAV system is superior to orthogonal frequency division multiplexing(OFDM)-based UAV systems,which can accomplish transmission tasks over shorter distances with lower energy consumption.
基金support by the UK Engineering and Physical Sciences Research Council(EPSRC)under Grants EP/K008757/1 and EP/M506515/1
文摘Modulation techniques for light fidelity (Li-Fi) are reviewed in this paper. Li-Fi is the fully networked solution for nmltiple users that combines communication and illumination simultaneously. Light emitting diodes (LEDs) are used in Li-Fi as visible light transmitters, therefore, only intensity modulated direct detected modulation techniques can be achieved. Single carrier modulation techniques are straightforward to be used in Li-Fi, however, computationally complex equalization processes are required in fre- quency selective Li-Fi channels. On the other hand, multiearrier modulation techniques offer a viable solution for Li-Fi in terms of power, spectral and computational efficiency. In particular, orthogonal frequency division multiplexing (OFDM) based modulation techniques offer a practical solution for Li-Fi, especially when direct current (DC) wander, and adaptive bit and power loading techniques are considered. Li-Fi modulation techniques need to also satisfy illumination requirements. Flickering avoidance and dimming control are considered in the variant modulation techniques presented. This paper surveys the suitable modulation techniques for Li-Fi including those which explore time, frequency and colour domains.
基金supported by Priority Research Centers Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2018R1A6A1A03024003)
文摘Non-orthogonal multiple access(NOMA) is a new access method to achieve high performance gains in terms of capacity and throughput, so it is currently under consideration as one of the candidates for fifth generation(5 G) technologies. NOMA utilizes power domain in order to superimpose signals of multiple users in a single transmitted signal. This creates a lot of interference at the receive side. Although the use of successive interference cancellation(SIC) technique reduces the interference, but to further improve the receiver performance, in this paper, we have proposed a joint Walsh-Hadamard transform(WHT) and NOMA approach for achieving better performance gains than the conventional NOMA. WHT is a well-known code used in communication systems and is used as an orthogonal variable spreading factor(OVSF) in communication systems. Application of WHT to NOMA results in low bit error rate(BER) and high throughput performance for both low and high channel gain users. Further, it also reduces peak to average power ratio(PAPR) of the user signal. The results are discussed in terms of comparison between the conventionalNOMA and the proposed technique, which shows that it offers high performance gains in terms of low BER at different SNR levels, reduced PAPR, high user throughput performance and better spectral efficiency.
基金supported by the National Natural Science Foundation of China (No.61501066,No.61572088,No.61701063)Chongqing Frontier and Applied Basic Research Project (No.cstc2015jcyjA40003,No.cstc2017jcyjAX0026,No.cstc2016jcyjA0209)+1 种基金the Open Fund of the State Key Laboratory of Integrated Services Networks (No.ISN16-03)the Fundamental Research Funds for the Central Universities (No.106112017CDJXY 500001)
文摘This paper addresses the problem of channel estimation in 5G-enabled vehicular-to-vehicular(V2V) channels with high-mobility environments and non-stationary feature. Considering orthogonal frequency division multiplexing(OFDM) system, we perform extended Kalman filter(EKF) for channel estimation in conjunction with Iterative Detector & Decoder(IDD) at the receiver to improve the estimation accuracy. The EKF is proposed for jointly estimating the channel frequency response and the time-varying time correlation coefficients. And the IDD structure is adopted to reduce the estimation errors in EKF. The simulation results show that, compared with traditional methods, the proposed method effectively promotes the system performance.
基金Supported by the National Natural Science Foundation of China(61077022)
文摘A sparse channel estimation method is proposed for doubly selective channels in multiple- input multiple-output ( MIMO ) orthogonal frequency division multiplexing ( OFDM ) systems. Based on the basis expansion model (BEM) of the channel, the joint-sparsity of MIMO-OFDM channels is described. The sparse characteristics enable us to cast the channel estimation as a distributed compressed sensing (DCS) problem. Then, a low complexity DCS-based estimation scheme is designed. Compared with the conventional compressed channel estimators based on the compressed sensing (CS) theory, the DCS-based method has an improved efficiency because it reconstructs the MIMO channels jointly rather than addresses them separately. Furthermore, the group-sparse structure of each single channel is also depicted. To effectively use this additional structure of the sparsity pattern, the DCS algorithm is modified. The modified algorithm can further enhance the estimation performance. Simulation results demonstrate the superiority of our method over fast fading channels in MIMO-OFDM systems.
文摘A least square (IS) parametric channel estimation method in broadband mt/ltiple input multiple output (MIMO) orthogonal frequency division multiplexing (OFDM) systems is proposed. The mean square error (MSE) performance using optimal training pilots is also given, which proves the method can improve the estimation precision greatly in sparse channel.. Since such method needs the multi-path time delays information of the channel, the probabilistic data association (PDA) method is employed to estimate the time delay of each path. Simulation results show that both the bit error rate (BER) and the MSE performance of the proposed method are better than the traditional LS channel estimation method.
基金This work was supported by the National Natural Science Foundation of China(No.61601296,No.61701295,and No.61801286)the Major scientific and technological innovation projects in Chengdu(No.2019-YF08-00082-GX)+1 种基金the Talent Program of Shanghai University of Engineering Science(No.2018RC43)the start-up research project of Shanghai University of Engineering Science(No.2019-39).
文摘In the current multi-carrier communications,Orthogonal Frequency Division Multiplexing(OFDM)is widely considered as a leading technology.For mobile applications,however,the orthogonality between subcarriers is deteriorated by Doppler frequency shift,which will introduce serious subcarrier phase rotation in the received signals and degrade the system performance.Thus,a method of differential grouping weighted symmetry data-conjugate(DWSCC)have been previously presented to obtain a better inter-carrier interference(ICI)suppressing effect and Bit Error Rate(BER)performance with no loss of spectral efficiency.In this paper,a novel scheme applying a completely different method of subcarrier interactive mapping is put forward.By mapping two different symbols which are both conjugated or multiplied by a complex weighting factor onto a pair of symmetric subcarriers,the presented scheme can greatly reduce the influence of subcarriers phase rotation caused by Doppler frequency shift in highly mobile environments.Analysis and simulation results indicate that comparing with the DWSCC method,our formulated scheme can not only maintain the spectrum utilization with no loss,but also have the advantages of an improvement on reduction effect and BER performance as well as a lower computational complexity in highly mobile environments.
基金support by the National Natural Science Foundation of China (61401360)the Fundamental Research Funds for the Central Universities (3102017zy026)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China (2016JM6017)the Scientific Research Program Funded by Shaanxi Provincial Education Department (16JK1702)
文摘In this paper, a novel signal-to-clipping noise ratio and least squares approximation tone reservation scheme(SCR-LSA TR) is proposed to reduce the peak-to-average power ratio for orthogonal frequency division multiplexing systems. During the SCR procedure, only the element with the maximal amplitude is picked for processing, which not only decreases the algorithm complexity, but also helps to overcome the BER deterioration. With the LSA method, the amplitude of the peak-cancelling signals can approximate to that of the original clipping noise as much as possible. Through the combination of the optimization factor in the LSA method, the classic SCR method can achieve better PAPR reduction with faster convergence. Simulation results show that the proposed SCR-LSA TR scheme has less in-band distortion and smaller out-of-band spectral radiation. The BER of the proposed scheme shows a better performance especially under the 16-QAM over the additive white Gaussian noise channel.
基金the research grant of New Century Excellent Talent Support Project from Minister of EducationHigh-tech R&D Program of China (863 Program) with Grant No. 2007AA01Z2B6.
文摘A novel channel estimation algorithm is presented in this paper for the recently proposed cyclic postfix based on orthogonal frequency division multiplexing (OFDM) systems. Phase equalization with the erasure decision is used to reduce both the channel estimation error and the computational complexity. Simulation results show that the proposed channel estimation algorithm can effectively estimate the channel impulse response (CIR) and the performance of the proposed phase equalization with erasure decision is comparable with the minimal mean square error (MMSE) equalization, but it offers less computational complexity.
基金supported by NSFC(no60872035)Youthful foundation of UESTC JX0707Key Youthful foundation of UESTC JX0801
文摘100 G Ethernet is considered to become the next generation Ethernet standard for IP networks.Typical 100 Gb/s transmission systems and their performance are presented.Comparision and analysis for 100 Gb/s transmission systems have been discussed.It is demonstrated that optical OFDM can be used in future 100 Gb/s/ch and long-haul system.
基金Supported by the National Natural Science Foundation of China(61101131)
文摘A new channel estimation method for orthogonal frequency division multiplexing (OFDM) system with large subcarriers and serious intercarrier interference (ICI) is proposed. The channel frequency-domain ( CFD ) matrix of each delay path is factorized to the product of a diagonal delay matrix and a circular ICI matrix in this model. To reduce the coefficient number, the circular ICI ma- trix is squeezed by using Hamming-window as the reshaping pulse in the transmitter. Meanwhile, the elements of the diagonal delay matrix are approximated with a discrete prolate spheroidal basis ex- pansion model (DPS-BEM). A least-square (LS) estimator is used to estimate the reduced channel coefficients. The proposed method is theoretically derived and simulated. The simulation results in- dicate that the model has good performance and is appropriate for various channel environments. The method also has low complexity and good spectral efficiency.