期刊文献+
共找到185篇文章
< 1 2 10 >
每页显示 20 50 100
Nonparametric Estimation of the Trend Function for Stochastic Processes Driven by Fractional Brownian Motion of the Second Kind
1
作者 WANG Yihan ZHANG Xuekang 《应用数学》 北大核心 2024年第4期885-892,共8页
The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of co... The present paper deals with the problem of nonparametric kernel density estimation of the trend function for stochastic processes driven by fractional Brownian motion of the second kind.The consistency,the rate of convergence,and the asymptotic normality of the kernel-type estimator are discussed.Besides,we prove that the rate of convergence of the kernel-type estimator depends on the smoothness of the trend of the nonperturbed system. 展开更多
关键词 Nonparametric estimation fractional brownian motion Uniform consistency Asymptotic normality
在线阅读 下载PDF
Polar Functions for Fractional Brownian Motion
2
作者 肖益民 《Chinese Quarterly Journal of Mathematics》 CSCD 1992年第1期76-80,共5页
Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the cla... Let X (t)(t∈R^N) be a d-dimensional fractional Brownian motion. A contiunous function f:R^N→R^d is called a polar function of X(t)(t∈R^N) if P{ t∈R^N\{0},X(t)=t(t)}=0. In this paper, the characteristies of the class of polar functions are studied. Our theorem 1 improves the previous results of Graversen and Legall. Theorem2 solves a problem of Legall (1987) on Brownian motion. 展开更多
关键词 fractional brownian motion polar function Lipschitz function class quasi-helix Hausdorff dimension
在线阅读 下载PDF
EXACT MAXIMUM LIKELIHOOD ESTIMATOR FOR DRIFT FRACTIONAL BROWNIAN MOTION AT DISCRETE OBSERVATION 被引量:5
3
作者 胡耀忠 Nualart David +1 位作者 肖炜麟 张卫国 《Acta Mathematica Scientia》 SCIE CSCD 2011年第5期1851-1859,共9页
This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both ... This paper deals with the problems of consistency and strong consistency of the maximum likelihood estimators of the mean and variance of the drift fractional Brownian motions observed at discrete time instants. Both the central limit theorem and the Berry-Ess′een bounds for these estimators are obtained by using the Stein’s method via Malliavin calculus. 展开更多
关键词 maximum likelihood estimator fractional brownian motions strong consistency central limit theorem Berry-Ess′een bounds Stein’s method Malliavin calculus
在线阅读 下载PDF
LEAST SQUARES ESTIMATION FOR ORNSTEIN-UHLENBECK PROCESSES DRIVEN BY THE WEIGHTED FRACTIONAL BROWNIAN MOTION 被引量:3
4
作者 申广君 尹修伟 闫理坦 《Acta Mathematica Scientia》 SCIE CSCD 2016年第2期394-408,共15页
In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain... In this article, we study a least squares estimator (LSE) of θ for the Ornstein- Uhlenbeck process X0=0,dXt=θXtdt+dBt^ab, t ≥ 0 driven by weighted fractional Brownian motion B^a,b with parameters a, b. We obtain the consistency and the asymptotic distribution of the LSE based on the observation {Xs, s∈[0,t]} as t tends to infinity. 展开更多
关键词 Weighted fractional brownian motion least squares estimator Ornstein-Uhl-enbeck process
在线阅读 下载PDF
CONTROLLABILITY OF NEUTRAL STOCHASTIC EVOLUTION EQUATIONS DRIVEN BY FRACTIONAL BROWNIAN MOTION 被引量:1
5
作者 崔静 闫理坦 《Acta Mathematica Scientia》 SCIE CSCD 2017年第1期108-118,共11页
In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to ... In this paper,we investigate the controllability for neutral stochastic evolution equations driven by fractional Brownian motion with Hurst parameter H ∈(1/2,1) in a Hilbert space.We employ the α-norm in order to reflect the relationship between H and the fractional power α.Sufficient conditions are established by using stochastic analysis theory and operator theory.An example is provided to illustrate the effectiveness of the proposed result. 展开更多
关键词 stochastic evolution equations fractional brownian motion CONTROLLABILITY
在线阅读 下载PDF
A LIMINF RESULT FOR HANSON-RUSSO TYPE INCREMENTS OF FRACTIONAL BROWNIAN MOTION 被引量:1
6
作者 张立新 《Acta Mathematica Scientia》 SCIE CSCD 1997年第2期190-197,共8页
Let {X(t), t greater than or equal to 0} be a fractional Brownian motion of order 2 alpha with 0 < alpha < 1,beta > 0 be a real number, alpha(T) be a function of T and 0 < alpha(T), [GRAPHICS] (log T/alpha... Let {X(t), t greater than or equal to 0} be a fractional Brownian motion of order 2 alpha with 0 < alpha < 1,beta > 0 be a real number, alpha(T) be a function of T and 0 < alpha(T), [GRAPHICS] (log T/alpha(T))/log T = r, (0 less than or equal to r less than or equal to infinity). In this paper, we proved that [GRAPHICS] where c(1), c(2) are two positive constants depending only on alpha,beta. 展开更多
关键词 Hanson-Russo type increments Wiener process fractional brownian motion
在线阅读 下载PDF
ERRATUM TO: LEAST SQUARES ESTIMATION FOR ORNSTEIN-UHLENBECK PROCESSES DRIVEN BY THE WEIGHTED FRACTIONAL BROWNIAN MOTION (ACTA MATHEMATICA SCIENTIA 2016,36B (2) :394-408) 被引量:1
7
作者 申广君 尹修伟 闫理坦 《Acta Mathematica Scientia》 SCIE CSCD 2017年第4期1173-1176,共4页
We give a correction of Theorem 2.2 of Shen, Yin and Yan (2016).
关键词 weighted fractional brownian motion least squares estimator Ornstein-Uhlenbeck process
在线阅读 下载PDF
SOLUTIONS TO BSDES DRIVEN BY BOTH FRACTIONAL BROWNIAN MOTIONS AND THE UNDERLYING STANDARD BROWNIAN MOTIONS
8
作者 韩月才 孙一芳 《Acta Mathematica Scientia》 SCIE CSCD 2018年第2期681-694,共14页
The local existence and uniqueness of the solutions to backward stochastic differential equations(BSDEs, in short) driven by both fractional Brownian motions with Hurst parameter H ∈ (1/2, 1) and the underlying s... The local existence and uniqueness of the solutions to backward stochastic differential equations(BSDEs, in short) driven by both fractional Brownian motions with Hurst parameter H ∈ (1/2, 1) and the underlying standard Brownian motions are studied. The generalization of the It6 formula involving the fractional and standard Brownian motions is provided. By theory of Malliavin calculus and contraction mapping principle, the local existence and uniqueness of the solutions to BSDEs driven by both fractional Brownian motions and the underlying standard Brownian motions are obtained. 展开更多
关键词 Backward stochastic differential equations malliavin calculus fractional brownian motions It5 formula
在线阅读 下载PDF
A LIMIT LAW FOR FUNCTIONALS OF MULTIPLE INDEPENDENT FRACTIONAL BROWNIAN MOTIONS
9
作者 Qian YU 《Acta Mathematica Scientia》 SCIE CSCD 2020年第3期734-754,共21页
Let B={B^H(t)}t≥0 be a d-dimensional fractional Brownian motion with Hurst parameter H∈(0,1).Consider the functionals of k independent d-dimensional fractional Brownian motions 1/√n∫0^ent1⋯∫0^entk f(B^H,1(s1)+⋯+B... Let B={B^H(t)}t≥0 be a d-dimensional fractional Brownian motion with Hurst parameter H∈(0,1).Consider the functionals of k independent d-dimensional fractional Brownian motions 1/√n∫0^ent1⋯∫0^entk f(B^H,1(s1)+⋯+B^H,k(sk))ds1⋯dsk,where the Hurst index H=k/d.Using the method of moments,we prove the limit law and extending a result by Xu\cite{xu}of the case k=1.It can also be regarded as a fractional generalization of Biane\cite{biane}in the case of Brownian motion. 展开更多
关键词 Limit theorem fractional brownian motion method of moments chaining argument
在线阅读 下载PDF
HARNACK TYPE INEQUALITIES FOR SDES DRIVEN BY FRACTIONAL BROWNIAN MOTION WITH MARKOVIAN SWITCHING
10
作者 裴雯熠 闫理坦 陈振龙 《Acta Mathematica Scientia》 SCIE CSCD 2023年第3期1403-1414,共12页
In this paper, by constructing a coupling equation, we establish the Harnack type inequalities for stochastic differential equations driven by fractional Brownian motion with Markovian switching. The Hurst parameter H... In this paper, by constructing a coupling equation, we establish the Harnack type inequalities for stochastic differential equations driven by fractional Brownian motion with Markovian switching. The Hurst parameter H is supposed to be in(1/2, 1). As a direct application, the strong Feller property is presented. 展开更多
关键词 stochastic differential equations Harnack type inequalities fractional brownian motion Markovian switching
在线阅读 下载PDF
THE LONG TIME BEHAVIOR OF THE FRACTIONAL ORNSTEIN-UHLENBECK PROCESS WITH LINEAR SELF-REPELLING DRIFT
11
作者 夏晓宇 闫理坦 杨晴 《Acta Mathematica Scientia》 SCIE CSCD 2024年第2期671-685,共15页
Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)... Let B^(H) be a fractional Brownian motion with Hurst index 1/2≤H<1.In this paper,we consider the equation(called the Ornstein-Uhlenbeck process with a linear self-repelling drift)dX_(t)^(H)=dB_(t)^(H)+σ X_(t)^(H)dt+vdt-θ(∫_(0)^(t)(X_(t)^(H)-X_(s)^(H))ds)dt,whereθ<0,σ,v∈ℝ.The process is an analogue of self-attracting diffusion(Cranston,Le Jan.Math Ann,1995,303:87–93).Our main aim is to study the large time behaviors of the process.We show that the solution X^(H)diverges to infinity as t tends to infinity,and obtain the speed at which the process X^(H)diverges to infinity. 展开更多
关键词 fractional brownian motion stochastic difference equations rate of convergence ASYMPTOTIC
在线阅读 下载PDF
EULER SCHEME FOR FRACTIONAL DELAY STOCHASTIC DIFFERENTIAL EQUATIONS BY ROUGH PATHS TECHNIQUES 被引量:1
12
作者 Johanna GARZON Samy TINDEL Soledad TORRES 《Acta Mathematica Scientia》 SCIE CSCD 2019年第3期747-763,共17页
In this note, we study a discrete time approximation for the solution of a class of delayed stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈(1/2,1). In order to prove ... In this note, we study a discrete time approximation for the solution of a class of delayed stochastic differential equations driven by a fractional Brownian motion with Hurst parameter H ∈(1/2,1). In order to prove convergence, we use rough paths techniques. Theoretical bounds are established and numerical simulations are displayed. 展开更多
关键词 fractional brownian motion stochastic differential EQUATIONS ROUGH paths discrete time approximation
在线阅读 下载PDF
CONVERGENCE RATE OF MULTIPLE FRACTIONAL STRATONOVICH TYPE INTEGRAL FOR HURST PARAMETER LESS THAN 1/2 被引量:1
13
作者 汪宝彬 《Acta Mathematica Scientia》 SCIE CSCD 2011年第5期1694-1708,共15页
In this paper, we have investigated the problem of the convergence rate of the multiple integralwhere f ∈ Cn+1([0, T ]n) is a given function, π is a partition of the interval [0, T ] and {BtHi ,π} is a family of... In this paper, we have investigated the problem of the convergence rate of the multiple integralwhere f ∈ Cn+1([0, T ]n) is a given function, π is a partition of the interval [0, T ] and {BtHi ,π} is a family of interpolation approximation of fractional Brownian motion BtH with Hurst parameter H 1/2. The limit process is the multiple Stratonovich integral of the function f . In view of known results, the convergence rate is different for different multiplicity n. Under some mild conditions, we obtain that the uniform convergence rate is 2H in the mean square sense, where is the norm of the partition generating the approximations. 展开更多
关键词 fractional brownian motion TRACE Stratonovich multiple integral convergence rate
在线阅读 下载PDF
STOCHASTIC HEAT EQUATION WITH FRACTIONAL LAPLACIAN AND FRACTIONAL NOISE:EXISTENCE OF THE SOLUTION AND ANALYSIS OF ITS DENSITY 被引量:1
14
作者 刘俊峰 Ciprian A.TUDOR 《Acta Mathematica Scientia》 SCIE CSCD 2017年第6期1545-1566,共22页
In this paper we study a fractional stochastic heat equation on Rd (d 〉 1) with additive noise /t u(t, x) = Dα/δ u(t, x)+ b(u(t, x) ) + WH (t, x) where D α/δ is a nonlocal fractional differential... In this paper we study a fractional stochastic heat equation on Rd (d 〉 1) with additive noise /t u(t, x) = Dα/δ u(t, x)+ b(u(t, x) ) + WH (t, x) where D α/δ is a nonlocal fractional differential operator and W H is a Gaussian-colored noise. We show the existence and the uniqueness of the mild solution for this equation. In addition, in the case of space dimension d = 1, we prove the existence of the density for this solution and we establish lower and upper Gaussian bounds for the density by Malliavin calculus. 展开更多
关键词 stochastic partial differential equation fractional brownian motion Malliavincalculus Gaussian density estimates
在线阅读 下载PDF
REMARKS ON SUB-FRACTIONAL BESSEL PROCESSES 被引量:1
15
作者 申广君 陈超 闫理坦 《Acta Mathematica Scientia》 SCIE CSCD 2011年第5期1860-1876,共17页
Let S = {(St1,···,Std )}t≥0 denote a d-dimensional sub-fractional Brownian motion with index H ≥ 1/2. In this paper we study some properties of the process X of the formwhere Rt = ((St1)2+·... Let S = {(St1,···,Std )}t≥0 denote a d-dimensional sub-fractional Brownian motion with index H ≥ 1/2. In this paper we study some properties of the process X of the formwhere Rt = ((St1)2+···+(Std)2)~1/2 is the sub-fractional Bessel process. 展开更多
关键词 sub-fractional brownian motion Malliavin calculus sub-fractional Bessel processes chaos expansion
在线阅读 下载PDF
A Fractional Characteristic Study of Liquid and Vapor Interface in Lennard-Jones Fluids
16
作者 刘朝 《Journal of Chongqing University》 CAS 2002年第1期61-66,共6页
The molecular dynamic simulation results for the liquid-vapor interface of the pure Lennard-Jones fluid are presented. The thermodynamic properties, the surface tension and the effective thickness of interfa-cial laye... The molecular dynamic simulation results for the liquid-vapor interface of the pure Lennard-Jones fluid are presented. The thermodynamic properties, the surface tension and the effective thickness of interfa-cial layer are determined. The rough characteristic of the liquid-vapor interface is discussed with fractional Brownian motion theory. Thereupon the fractal dimension d of the liquid-vapor interface is obtained. 展开更多
关键词 Molecular dynamic simulation Liquid vapor interface ROUGHNESS fractional brownian motion
在线阅读 下载PDF
AN INTEGRATION BY PARTS FORMULA FOR STOCHASTIC HEAT EQUATIONS WITH FRACTIONAL NOISE
17
作者 尹修伟 《Acta Mathematica Scientia》 SCIE CSCD 2023年第1期349-362,共14页
In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequal... In this paper,we establish the integration by parts formula for the solution of fractional noise driven stochastic heat equations using the method of coupling.As an application,we also obtain the shift Harnack inequalities. 展开更多
关键词 integration by parts formula stochastic heat equations fractional brownian motion shift Harnack inequality coupling by change of measures
在线阅读 下载PDF
三维星座缩放加密的扩展加权分数傅里叶变换安全通信方法
18
作者 孟庆微 贠彦直 王晗 《通信学报》 北大核心 2025年第2期136-146,共11页
为解决无线通信开放性带来的安全问题,从信号层面入手,提出一种三维星座缩放加密的扩展加权分数傅里叶变换安全通信方法。该方法设计了混沌三维布朗运动序列,利用其控制缩放参数生成随机缩放矩阵,进而对每个星座符号进行缩放加密。随后... 为解决无线通信开放性带来的安全问题,从信号层面入手,提出一种三维星座缩放加密的扩展加权分数傅里叶变换安全通信方法。该方法设计了混沌三维布朗运动序列,利用其控制缩放参数生成随机缩放矩阵,进而对每个星座符号进行缩放加密。随后,将缩放加密后的星座符号组合为I/Q信号,并进行扩展加权分数傅里叶变换处理。此外,还给出了三维星座缩放加密的概率模型,并证明了其具有完全保密性。仿真结果表明,所提方法加密后有效扰乱了原本分布规律的星座图,且即使密钥空间发生微小变化,也无法解密出任何有价值的信息。 展开更多
关键词 三维星座 缩放加密 扩展加权分数傅里叶变换 混沌三维布朗运动
在线阅读 下载PDF
基于FBM分形特征的快速小波地形模拟算法 被引量:5
19
作者 卜彦龙 潘亮 沈林成 《电子与信息学报》 EI CSCD 北大核心 2009年第3期537-541,共5页
该文基于FBM分形原理,采用Haar小波对自然地形数据进行模拟构建。在分析自然地形分形系数与小波系数之间关系的基础上,建立基于Haar小波的地形构建模型;通过对真实地形数据不同阶层小波系数统计计算得到分形特征参数;以构建模型为基础,... 该文基于FBM分形原理,采用Haar小波对自然地形数据进行模拟构建。在分析自然地形分形系数与小波系数之间关系的基础上,建立基于Haar小波的地形构建模型;通过对真实地形数据不同阶层小波系数统计计算得到分形特征参数;以构建模型为基础,结合分形特征参数,模拟生成自然地形。该算法相对真实地形数据具有小的交叉熵,且计算复杂度较小,仿真数据验证了算法的有效性。 展开更多
关键词 地形模拟 fbm模型 分形特征 HAAR小波
在线阅读 下载PDF
基于FBM模型的自相似网络排队性能分析 被引量:3
20
作者 胡玉清 谭献海 +1 位作者 刘黎娜 杜彬 《微电子学与计算机》 CSCD 北大核心 2008年第7期61-64,共4页
利用能够反映自相似特性的FBM模型,采用G/D/1排队模型研究了自相似性对网络性能的影响,讨论了在Norros给出的缓冲区溢出概率公式的基础下,FBM模型为输入时,网络平均排队延迟的解析公式.对理论分形流量和实际测量流量进行了仿真实验,验... 利用能够反映自相似特性的FBM模型,采用G/D/1排队模型研究了自相似性对网络性能的影响,讨论了在Norros给出的缓冲区溢出概率公式的基础下,FBM模型为输入时,网络平均排队延迟的解析公式.对理论分形流量和实际测量流量进行了仿真实验,验证了结果的正确性和有效性. 展开更多
关键词 网络流量 自相似 长相关 排队性能 分形布朗运动
在线阅读 下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部