During the operation of the rice combine harvester,the fuselage tilts due to the tilt and unevenness of the ground affect its maneuverability and operational reliability.Aiming at the problem of leveling due to the ti...During the operation of the rice combine harvester,the fuselage tilts due to the tilt and unevenness of the ground affect its maneuverability and operational reliability.Aiming at the problem of leveling due to the tilt of the field surface,this research developed an innovative dual-parallelogram chassis lifting mechanism for rice harvesters designed a hydraulic system to adjust the chassis height by extending the cylinder.Using Adams simulation software,a detailed model of the lifting chassis was constructed to analyze its performance,revealing a direct correlation between the hydraulic cylinder extension and chassis elevation.Notably,the mechanism could achieve leveling on slopes with inclination angles of up to 7.5°.Comprehensive evaluations of the liftable chassis system were conducted under both static and dynamic conditions.In the static tests,the system exhibited the capacity for comprehensive or unilateral auto-leveling contingent upon the tilt,with leveling times and angular variations confined to 3.6 s and±0.4°,respectively.In dynamic tests conducted on sloped fields and paddy soils,the system reduced post-leveling mean tilt angles and standard deviations remained below 1.2°and 0.6°,respectively.These results demonstrated a substantial improvement in the stability and reliability of the chassis during operations.This research provides valuable insights into the design and optimization of automatic leveling mechanisms and structural innovations for harvester chassis.展开更多
Tire and rubber track interchangeable chassis combines the advantages of tire and rubber track,which can greatly improve the maneuverability of military construction machinery.However,there is almost no effective calc...Tire and rubber track interchangeable chassis combines the advantages of tire and rubber track,which can greatly improve the maneuverability of military construction machinery.However,there is almost no effective calculation model for the real-time static steering torque.When the relative sliding speed is greater than 0.01 m/s,the influence of friction heating can not be ignored.An improved LuGre model is established to calculate the static real-time steering torque of tire and rubber track interchangeable chassis.Firstly,the friction heating model between rubber and ground is established.Combined with the influence of temperature on the dynamic performance of rubber material,the influence of friction heating on the stiffness and friction coefficient of rubber track is analyzed,and the improved LuGre friction model is established.The steering torque of tire and rubber track interchangeable chassis is affected by rubber material properties,steering speed,pavement type,and ambient temperature.Compared with the original Lu Gre model,the improved LuGre model captures the change in friction torque during multiple in-situ turns due to frictional heating.The error with the experimental data is small,which verifies the effectiveness of the improved LuGre model.展开更多
基金Sichuan Science and Technology Program(2022YFG0077)。
文摘During the operation of the rice combine harvester,the fuselage tilts due to the tilt and unevenness of the ground affect its maneuverability and operational reliability.Aiming at the problem of leveling due to the tilt of the field surface,this research developed an innovative dual-parallelogram chassis lifting mechanism for rice harvesters designed a hydraulic system to adjust the chassis height by extending the cylinder.Using Adams simulation software,a detailed model of the lifting chassis was constructed to analyze its performance,revealing a direct correlation between the hydraulic cylinder extension and chassis elevation.Notably,the mechanism could achieve leveling on slopes with inclination angles of up to 7.5°.Comprehensive evaluations of the liftable chassis system were conducted under both static and dynamic conditions.In the static tests,the system exhibited the capacity for comprehensive or unilateral auto-leveling contingent upon the tilt,with leveling times and angular variations confined to 3.6 s and±0.4°,respectively.In dynamic tests conducted on sloped fields and paddy soils,the system reduced post-leveling mean tilt angles and standard deviations remained below 1.2°and 0.6°,respectively.These results demonstrated a substantial improvement in the stability and reliability of the chassis during operations.This research provides valuable insights into the design and optimization of automatic leveling mechanisms and structural innovations for harvester chassis.
基金funded by the National Key Research and Development Program of China(Grant No.2016YFC0802900)。
文摘Tire and rubber track interchangeable chassis combines the advantages of tire and rubber track,which can greatly improve the maneuverability of military construction machinery.However,there is almost no effective calculation model for the real-time static steering torque.When the relative sliding speed is greater than 0.01 m/s,the influence of friction heating can not be ignored.An improved LuGre model is established to calculate the static real-time steering torque of tire and rubber track interchangeable chassis.Firstly,the friction heating model between rubber and ground is established.Combined with the influence of temperature on the dynamic performance of rubber material,the influence of friction heating on the stiffness and friction coefficient of rubber track is analyzed,and the improved LuGre friction model is established.The steering torque of tire and rubber track interchangeable chassis is affected by rubber material properties,steering speed,pavement type,and ambient temperature.Compared with the original Lu Gre model,the improved LuGre model captures the change in friction torque during multiple in-situ turns due to frictional heating.The error with the experimental data is small,which verifies the effectiveness of the improved LuGre model.