期刊文献+
共找到308篇文章
< 1 2 16 >
每页显示 20 50 100
基于跳跃连接神经网络的无监督弱光图像增强算法 被引量:2
1
作者 刘洋 刘思瑞 +1 位作者 徐晓淼 王竹筠 《电子测量与仪器学报》 北大核心 2025年第5期208-216,共9页
针对Zero-DCE网络存在细节丢失和不同亮度区域处理结果出现差异等问题,设计了一种基于增强深度曲线估计网络(EnDCE-Net)的无监督弱光图像增强算法。通过探索弱光图像与未配对的正常光照图像之间的潜在映射关系,实现了对低光照场景下图... 针对Zero-DCE网络存在细节丢失和不同亮度区域处理结果出现差异等问题,设计了一种基于增强深度曲线估计网络(EnDCE-Net)的无监督弱光图像增强算法。通过探索弱光图像与未配对的正常光照图像之间的潜在映射关系,实现了对低光照场景下图像质量的显著改善。首先,提出新的特征提取网络,该网络整合了多个跳跃连接与卷积层,实现低层与高层特征的有效融合,从而学习到弱光图像中的关键特征,增强网络对弱光图像的学习能力。其次,设计一组联合的无参考损失函数,强调优化过程中与亮度相关的特性,从而更有利于图像增强模型的参数更新,提高图像增强的质量和效果。为了验证所提出算法的有效性,在5个公开数据集上进行了对比实验,与次优算法Zero-DCE相比,有参考数据集SICE上的峰值信噪比(PSNR)和结构相似性(SSIM)分别提升了9.4%、21%。无参考数据集LIME、DICM、MEF、NPE上NIQE分别达到了4.04、3.04、3.35、3.83。实验结果表明,所提出算法表现出色,增强后的图像色彩自然,亮度均衡且细节清晰。无论是主观视觉评价还是客观定量指标,均显著优于对比算法,充分体现了在图像增强效果上的卓越性和先进性。 展开更多
关键词 弱光图像增强 深度曲线估计 无参考损失函数 多层卷积神经网络 无监督学习
在线阅读 下载PDF
基于神经网络代理模型的门式墩优化方法及软件研发 被引量:1
2
作者 柏华军 《铁道标准设计》 北大核心 2025年第3期106-112,共7页
针对门式墩结构设计影响因素多、计算耗时长、传统优化方法易陷入局部最优等问题,基于BPNN代理模型和NSGAII遗传算法研发了预应力混凝土门式墩结构尺寸优化软件。首先,建立以结构工程数量为优化目标、安全指标为约束条件的结构尺寸优化... 针对门式墩结构设计影响因素多、计算耗时长、传统优化方法易陷入局部最优等问题,基于BPNN代理模型和NSGAII遗传算法研发了预应力混凝土门式墩结构尺寸优化软件。首先,建立以结构工程数量为优化目标、安全指标为约束条件的结构尺寸优化数学模型;然后,基于有限元法构建门式墩训练样本集,采用拉丁超立方开展试验设计,建立BPNN神经网络代理模型;最后,采用NSGAII遗传优化算法对BPNN神经网络代理模型进行搜索,实现门式墩最优结构尺寸和钢束线形的搜索推荐。依托某门式墩结构设计,开展算法有效性和效率验证,结果表明,案例的优化时间由有限元法的45 h缩短至智能优化算法的15 min,优化算法在保证预测精度的同时提高优化效率180倍。 展开更多
关键词 铁路桥梁 门式墩 结构优化 BP神经网络 代理模型 多目标优化 NSGAII算法 拉丁超立方设计
在线阅读 下载PDF
基于PCA-BPNN的桥梁爆炸荷载时程预测
3
作者 杜晓庆 何益平 +2 位作者 邱涛 程帅 张德志 《爆炸与冲击》 北大核心 2025年第3期77-91,共15页
人工智能方法是预测爆炸荷载的新手段,但现有方法主要用于预测爆炸冲击波的超压峰值或冲量,而用于预测反射超压时程的研究不多。针对这一问题,以平面冲击波绕射桥梁主梁为对象,提出了一种基于主成分分析(principal components analysis,... 人工智能方法是预测爆炸荷载的新手段,但现有方法主要用于预测爆炸冲击波的超压峰值或冲量,而用于预测反射超压时程的研究不多。针对这一问题,以平面冲击波绕射桥梁主梁为对象,提出了一种基于主成分分析(principal components analysis,PCA)和误差反向传播神经网络(backpropagation neural network,BPNN)的桥梁爆炸冲击波反射超压时程预测模型。该预测模型利用PCA降维处理时程数据,基于多任务学习的BPNN算法,提出了考虑超压峰值和冲量峰值影响的损失函数,使模型能有效预测不同入射超压下的桥梁冲击波荷载时程。通过分析多任务学习模型、多输入单输出模型和多输入多输出模型等3种BPNN模型,发现多任务学习模型的预测精度最高,而多输入多输出模型难以有效适应当前预测任务需求。采用多任务学习模型预测得到的桥梁表面各测点位置的反射超压时程、超压峰值精度较高,决定系数R2分别为0.792和0.987,作用在箱梁上的合力时程和扭矩时程预测值也与数值模拟值较为吻合。同时,该模型对内插值预测的表现优于外推值预测,但其在预测外推值方面同样展现出了一定的能力。 展开更多
关键词 爆炸荷载预测 反射超压时程 误差反向传播神经网络 主成分分析 多任务学习
在线阅读 下载PDF
虑及多源不确定性的贮箱结构多裂纹扩展分析
4
作者 王冲 王祥硕 +3 位作者 范浩然 邱志平 张文丰 刘涛 《力学学报》 北大核心 2025年第9期2209-2222,共14页
针对火箭贮箱搅拌摩擦焊焊缝区域多裂纹萌生与扩展融合问题,基于有限元联合仿真技术与混合不确定性分析理论,提出了一种虑及多源不确定性的贮箱结构多裂纹扩展融合分析方法.通过采用有限元软件对贮箱结构进行有限元分析并模拟贮箱底部... 针对火箭贮箱搅拌摩擦焊焊缝区域多裂纹萌生与扩展融合问题,基于有限元联合仿真技术与混合不确定性分析理论,提出了一种虑及多源不确定性的贮箱结构多裂纹扩展融合分析方法.通过采用有限元软件对贮箱结构进行有限元分析并模拟贮箱底部焊缝区域共线多裂纹的扩展融合过程,系统分析了多裂纹动态演化行为及其应力强度因子变化规律,并揭示了多裂纹敏感参数对焊缝疲劳寿命的影响机制.在此基础上,考虑多源不确定性对多裂纹扩展寿命的影响,构建了随机-区间混合分析模型,其中材料参数的不确定性用随机变量表征,多裂纹尺寸参数的不确定性用区间变量进行表征,此时输入混合不确定性对于扩展寿命的影响可以通过响应的区间边界以及区间边界的随机特征进行描述.为进一步提高不确定性分析效率,通过训练BP(back propagation)神经网络模型以代替耗时的有限元仿真模型,实现了多源不确定因素影响下共线多裂纹扩展寿命的高效预测.最终,通过贮箱焊接结构共线多裂纹融合扩展的工程算例验证了所提方法的有效性. 展开更多
关键词 搅拌摩擦焊 多裂纹扩展融合 多源不确定性 混合分析模型 BP 神经网络
在线阅读 下载PDF
融合多层图与分类信息的双意图会话推荐
5
作者 刘超 王中迪 +1 位作者 余岩化 朱军 《计算机应用研究》 北大核心 2025年第4期1058-1064,共7页
针对现有会话推荐系统存在的会话间信息挖掘不够充分、会话间聚合信息冗余和辅助信息未与会话特征相结合的问题,提出融合多层图与分类信息的双意图会话推荐模型(SRIMC)。首先,根据会话序列,构建局部会话图、会话关系图和全局项目图,通... 针对现有会话推荐系统存在的会话间信息挖掘不够充分、会话间聚合信息冗余和辅助信息未与会话特征相结合的问题,提出融合多层图与分类信息的双意图会话推荐模型(SRIMC)。首先,根据会话序列,构建局部会话图、会话关系图和全局项目图,通过图神经网络(GNN)学习得到局部会话特征、会话关系特征和全局项目会话特征,并将上述特征结合获得α意图;其次,基于替换先验分布为β分布的贝叶斯分布整合分类信息与会话长度信息,获得β意图;最后,将α和β意图融合进行预测。在五个公开数据集上的实验结果表明,SRIMC的P@20提升了1.23%~51.78%,MRR@20提升了2.87%~80.87%,证明了模型利用多层会话信息与分类信息捕获用户意图的有效性。 展开更多
关键词 会话推荐 多层信息 图神经网络 分类信息 双意图
在线阅读 下载PDF
基于用户数据特征深度挖掘的快速图书检索算法
6
作者 窦淑庆 刘思豆 《现代电子技术》 北大核心 2025年第14期137-142,共6页
针对传统图书推荐系统所得到的计算结果滞后于实时需求且准确性较低的缺陷,文中基于用户画像数据,提出一种快速图书检索算法。该算法在用户画像构建部分对静态属性抽取和动态标签行为进行建模。在图书特征提取模型中,使用BERT-Word2Vec... 针对传统图书推荐系统所得到的计算结果滞后于实时需求且准确性较低的缺陷,文中基于用户画像数据,提出一种快速图书检索算法。该算法在用户画像构建部分对静态属性抽取和动态标签行为进行建模。在图书特征提取模型中,使用BERT-Word2Vec作为基础框架进行多模态特征提取,并利用双塔深度匹配模型构建了用户MLP塔和图书改进CNN塔,对特征进行充分细致的多维分析。模型通过将实时反馈机制Kafka-Redis流处理算法与会话注意力加权融合,最终实现了场景化的推荐。实验测试结果显示,NDCG@10指标较最优基准提升了约21.0%,行为反馈延迟在峰值500 QPS流量下小于等于3.5 s。表明所提算法能够为知识服务场景提供兼具准确性、时效性与场景适应性的信息推荐解决方案。 展开更多
关键词 用户画像 双向编码器表示技术 双塔深度匹配模型 多层感知器 卷积神经网络 推荐算法
在线阅读 下载PDF
MCNet:融合多层感知机和卷积的轻量级病变区域分割网络 被引量:2
7
作者 申华磊 上官国庆 +2 位作者 袁成雨 陈艳浩 刘栋 《河南师范大学学报(自然科学版)》 北大核心 2025年第3期96-103,共8页
针对现有医学图像分割网络存在计算量大、对硬件资源要求高和推理速度慢等不足,提出一种轻量级快速分割网络MCNet.MCNet采用编码器-解码器架构,使用多层感知机(MLP)和卷积分别提取并融合医学图像的全局特征和局部特征,以减少网络参数量... 针对现有医学图像分割网络存在计算量大、对硬件资源要求高和推理速度慢等不足,提出一种轻量级快速分割网络MCNet.MCNet采用编码器-解码器架构,使用多层感知机(MLP)和卷积分别提取并融合医学图像的全局特征和局部特征,以减少网络参数量并提高分割精度.在编码阶段使用卷积分支和多层感知机分支分别提取多尺度的局部特征和全局特征.通过跳跃连接融合这些特征并送入解码器.在解码阶段使用注意力门控机制进行特征增强.在BUSI和ISIC2018数据集上进行实验.和当前最优方法相比,MCNet的Dice相似系数和均交并比在BUSI数据集上分别提高0.11%和0.09%、在ISIC2018数据集上分别提高0.64%和0.95%.同时,MCNet显著减少了网络参数量、降低了浮点运算次数并缩短了CPU推理时间. 展开更多
关键词 医学图像分割 深度神经网络 多层感知机(MLP) 轻量级网络
在线阅读 下载PDF
基于加权多层卷积神经网络模型的冬奥会场区滑坡易发性评价 被引量:1
8
作者 胡文杰 李峰 +1 位作者 张梅东 刘文龙 《工程地质学报》 北大核心 2025年第3期949-958,共10页
开展冬奥会地区滑坡易发性评价对于冬奥会场馆的运维风险管理具有重要意义。本文以冬奥会6个区县为研究对象,从地形地貌、地质构造、水文、人类活动和土壤植被5个方面构建冬奥会地区滑坡易发性评价指标体系,针对易发性因子权重需反复多... 开展冬奥会地区滑坡易发性评价对于冬奥会场馆的运维风险管理具有重要意义。本文以冬奥会6个区县为研究对象,从地形地貌、地质构造、水文、人类活动和土壤植被5个方面构建冬奥会地区滑坡易发性评价指标体系,针对易发性因子权重需反复多次调整的繁琐过程、过多的池化层造成特征信息大量丢失等问题,提出影响因子权重自适应学习、扩张卷积层替换池化层的加权多层卷积神经网络(Weighted Multi-CNN,WM-CNN)用于滑坡易发性预测。运用加权多层卷积神经网络、一维卷积神经网络(CNN-1D)、卷积神经网络(CNN)、支持向量机(SVM)、随机森林模型(RF)分别构建该区域的滑坡易发性评价模型。对冬奥会地区进行滑坡易发性区划,并通过受试者工作特征曲线(ROC)。结果表明,WM-CNN模型预测效果最好,高于CNN-1D模型的0.835、CNN模型的0.877、SVM模型的0.819、RF模型的0.884。此外,研究区域极高易发区和高易发区集中在北京的延庆区,大多分布在道路两侧和山谷地带。国家跳台滑雪中心和延庆奥运村位于中等易发区,滑坡风险较大,因此需要重点监控。 展开更多
关键词 冬奥会区域 加权多层 卷积神经网络 深度学习 滑坡易发性
在线阅读 下载PDF
基于FDM的ABS/GF复合材料的力学性能分析及工艺参数优化 被引量:1
9
作者 林峰 叶大鹏 《塑料工业》 北大核心 2025年第4期77-85,共9页
为探索熔融沉积制造(FDM)工艺参数对玻璃纤维增强丙烯腈-丁二烯-苯乙烯共聚物(ABS/GF)复合材料力学性能的影响,为其应用和性能优化提供理论依据,本文通过Plackett-Burman筛选实验、单因素实验以及正交试验,探讨了各工艺参数对材料力学... 为探索熔融沉积制造(FDM)工艺参数对玻璃纤维增强丙烯腈-丁二烯-苯乙烯共聚物(ABS/GF)复合材料力学性能的影响,为其应用和性能优化提供理论依据,本文通过Plackett-Burman筛选实验、单因素实验以及正交试验,探讨了各工艺参数对材料力学性能的影响,并识别出对拉伸强度和弯曲强度有显著影响的关键参数。在此基础上,基于拉丁超立方采样方法获取实验数据,通过反向传播(BP)神经网络建立工艺参数与力学性能之间的非线性预测模型。最后,通过非支配排序遗传算法II(NSGA-II)多目标遗传算法,对拉伸强度和弯曲强度进行同步优化,得到了Pareto前沿解集,展示了不同参数组合下的优化权衡。结果表明,喷嘴温度、打印层高、打印线宽和打印速度是影响材料拉伸强度和弯曲强度的最显著因素。通过多目标优化,得到了能够同时最大化拉伸强度和弯曲强度的最佳参数组合,拉伸强度和弯曲强度分别提高7.6%和7.2%以上。实验验证结果显示,优化模型的预测值与实验测得值的偏差在可接受范围内,进一步验证了所提出代理模型和多目标优化方法的有效性。 展开更多
关键词 玻璃纤维增强丙烯腈-丁二烯-苯乙烯共聚物 正交试验 反向传播神经网络 遗传算法 多目标优化
在线阅读 下载PDF
基于注意力机制的GRU-IKF场面滑行轨迹预测模型 被引量:2
10
作者 刘雨生 汤新民 任宣铭 《北京航空航天大学学报》 北大核心 2025年第3期1028-1036,共9页
为解决机场场面滑行冲突、等待时间长等运行问题,保证场面安全的同时提高服务水平,增加机场吞吐量,针对机器学习模型性能依赖于良好数据集的现状,提出一种基于注意力机制、融合门控循环单元(GRU)和改进卡尔曼滤波算法(IKF)的场面航空器... 为解决机场场面滑行冲突、等待时间长等运行问题,保证场面安全的同时提高服务水平,增加机场吞吐量,针对机器学习模型性能依赖于良好数据集的现状,提出一种基于注意力机制、融合门控循环单元(GRU)和改进卡尔曼滤波算法(IKF)的场面航空器滑行轨迹预测模型。使用3个独立的门控循环单元网络来捕获航空器未来时刻的运动状态和时间上的依赖性,并引入注意力机制加强提取数据差异性特征的能力,学习输入到输出的映射关系;与改进后的扩展卡尔曼滤波器融合,将神经网络输出的结果整合到状态预测和更新过程,以提高预测轨迹序列的准确性。利用禄口机场航空器真实滑行轨迹对所提模型的有效性进行验证,仿真结果表明:所提模型能够对场面航空器滑行轨迹进行有效准确的预测,总体均方误差约为0.00128,相较于单一循环神经网络(RNN)、长短时记忆(LSTM)网络及GRU模型,均方根误差(RMSE)分别减小72.9%,54.7%和39.9%,预测耗时40 ms,可以准确、快速预测滑行轨迹,为降低机场场面管理系统运行负荷提供帮助。 展开更多
关键词 航空运输 改进卡尔曼滤波 GRU-Attention神经网络 机场场面运行 轨迹预测
在线阅读 下载PDF
小样本条件下车削加工工艺碳排放多目标预测研究 被引量:1
11
作者 杨历夏 王宇钢 +2 位作者 唐祎晖 张阴硕 穆俊珍 《机床与液压》 北大核心 2025年第1期73-79,共7页
针对低碳耗的车削加工工艺数据采集困难以及因数据样本不足造成预测精度不高的问题,提出一种小样本条件下的车削加工工艺碳排放多目标预测方法。通过中心复合实验设计确定样本数量,在保留工艺有效信息的同时减少所需实验数据。基于反向... 针对低碳耗的车削加工工艺数据采集困难以及因数据样本不足造成预测精度不高的问题,提出一种小样本条件下的车削加工工艺碳排放多目标预测方法。通过中心复合实验设计确定样本数量,在保留工艺有效信息的同时减少所需实验数据。基于反向传播神经网络构建以碳排放和加工时间为目标的预测模型,并通过改进麻雀搜索算法对反向传播神经网络的参数寻优,最终得到加工工艺多目标预测模型。最后,通过加工实验验证在小样本条件下该方法的有效性。结果表明:基于ASSA-BP的模型能以较高精度预测车削加工工艺的碳排放量和加工时间;与传统BP神经网络方法相比,文中方法的碳排放量和加工时间的预测精度均得到有效提升。 展开更多
关键词 小样本条件 车削加工工艺 碳排放多目标预测 反向传播神经网络 改进麻雀搜索算法
在线阅读 下载PDF
一种基于双模态的睡眠分期研究
12
作者 王亚群 杨青 +2 位作者 文斗 王莹 王翔宇 《郑州大学学报(理学版)》 北大核心 2025年第3期81-87,共7页
现有研究普遍专注于单个信号,忽略了多模态信号在特定睡眠阶段提供的睡眠信息,以及提取睡眠信号时,随着网络的加深导致重要信息丢失,从而降低模型分类的能力。针对上述问题,设计了一种基于脑电图(electroencephalogram,EEG)、眼电图(ele... 现有研究普遍专注于单个信号,忽略了多模态信号在特定睡眠阶段提供的睡眠信息,以及提取睡眠信号时,随着网络的加深导致重要信息丢失,从而降低模型分类的能力。针对上述问题,设计了一种基于脑电图(electroencephalogram,EEG)、眼电图(electrooculogram,EOG)的深度神经网络模型,以端到端的方式进行睡眠分期,称为MCNN-LSTMs模型。多尺度卷积神经网络(multiscale convolutional neural network,MCNN)用于提取脑电信号和眼电信号的特征,双层长短期记忆(long short-term memory,LSTM)神经网络对提取到的特征进行融合,然后输入分类器进行睡眠分期。在公共数据集Sleep-EDF上评估了所设计的方法在睡眠分期上的性能。实验表明,使用两种通道(EEG-EOG)时,在Sleep-EDF-20数据集上的分类准确率最高为92.60%,在Sleep-EDF-78数据集上的分类准确率最高为91.10%,优于单通道信号以及其他对比方法。所提方法验证了多种信号对睡眠分期的有效性,并为研究睡眠分期提供了重要思路。 展开更多
关键词 睡眠分期 多模态 卷积神经网络 多层网络 LSTM
在线阅读 下载PDF
基于VAE与API行为特征抽取的恶意软件检测
13
作者 于孟洋 师智斌 +1 位作者 郝伟泽 张舒娟 《计算机工程与设计》 北大核心 2025年第2期464-471,共8页
针对现有检测方法缺乏数据连续性和完整性的建模能力、难以提取API调用序列的全局特征,且对API行为语义表示抽取单一等问题,提出一种基于变分自编码器与API行为特征抽取的恶意软件检测方法。通过词嵌入将调用函数表示为语义稠密向量;基... 针对现有检测方法缺乏数据连续性和完整性的建模能力、难以提取API调用序列的全局特征,且对API行为语义表示抽取单一等问题,提出一种基于变分自编码器与API行为特征抽取的恶意软件检测方法。通过词嵌入将调用函数表示为语义稠密向量;基于变分自编码器架构,学习数据的潜在状态表示,完成对恶意软件全局特征和模式的提取;采用多层卷积神经网络,抽取不同粒度调用子序列的行为语义特征,同时统计调用频率,获取API使用权重信息;综合上述特征进行恶意软件检测。实验结果表明,该方法在阿里云数据集上达到了97.81%的良/恶性检测精度和93.74%的多分类精度,验证了方法的有效性。 展开更多
关键词 恶意软件检测 变分自编码器 多层卷积神经网络 序列信息 行为语义 频率信息 特征融合
在线阅读 下载PDF
改进KPCA结合多目标蜻蜓算法优化BP神经网络的联合收割机故障诊断
14
作者 孟桐 雷鸣 +2 位作者 宋文广 王丹丹 黄梦可 《机电工程》 北大核心 2025年第7期1258-1267,共10页
针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性... 针对联合收割机数据维度高、诊断效果不理想的问题,提出了一种改进核主成分分析(KPCA)结合多目标蜻蜓算法(MTDA)优化反向传播(BP)神经网络的联合收割机故障诊断方法。首先,采用Morlet小波作为KPCA的核函数,其融合了高斯包络与正弦波特性,能够有效捕捉收割机的瞬态变化与局部异常,从而提取出了不同工况下的主要成分,降低了数据维度,减少了冗余信息;其次,针对传统蜻蜓算法的局限性,引入了自适应变异策略、非线性惯性权重及动态收敛因子,构建了多目标蜻蜓算法,对Schaffer、Michalewicz和Rastrigin函数进行了求解,验证了MTDA能显著提升全局与局部搜索平衡能力;最后,利用MTDA对BP神经网络的权值和阈值进行了优化,构建了MTDA-BP综合故障诊断模型,将模型应用于联合收割机的故障诊断中,通过实验验证了其有效性。研究结果表明:故障诊断平均精度达到96.7%,通过与当前主流方法的实验对比分析,采用Micro-average ROC进行了模型评价,结果显示该模型的曲线下面积(AUC)为0.967。实验结果充分证明了该模型在检测精确度与泛化性方面均具有显著优势,该研究也为解决智能农业机械中的诊断提供了一种有效的方法。 展开更多
关键词 核主成分分析 MORLET小波 多目标蜻蜓算法 反向传播神经网络 联合收割机 故障诊断
在线阅读 下载PDF
基于多融合算法的青年男性三维足型类别划分及特征提取
15
作者 白啸天 刘静民 +4 位作者 霍洪峰 王朋飞 武梦旖 王冲 邢泽宇 《医用生物力学》 北大核心 2025年第3期638-645,共8页
目的 通过将我国青年男性足型进行分类,提取出足型的特征指标,构建足型常模数据库。方法 采集1 483名青年健康男性的足型数据,通过谱聚类算法进行足型类别划分,采用深度神经网络(deep neural network,DNN)进行分类模型的训练,结合逐层... 目的 通过将我国青年男性足型进行分类,提取出足型的特征指标,构建足型常模数据库。方法 采集1 483名青年健康男性的足型数据,通过谱聚类算法进行足型类别划分,采用深度神经网络(deep neural network,DNN)进行分类模型的训练,结合逐层相关传播(layer-wise relevance propagation,LRP)和相关系数法完成足型特征的提取,对比不同足型特征差异。结果 通过谱聚类得到4种足型分类,其中足型1表现为翘拇指、内收小趾、高足跟宽足;足型2表现为拇指外翻的窄足;足型3表现为拇指外翻的低弓足;足型4表现为翘拇指的高弓足。结合可解释神经网络和相关系数法,从27个足型指标中提取出踵心到足底长、拇指高、足舟骨高、足跟外缘高、拇外翻角度、小趾角度、足背围、后跟角度、纵弓角度9个指标,所提取指标构建的分类模型总判别准确率达93.67%。结论 我国青年男性分可为4种常规足型,在后足、中足和前足3个部分,可提取包含长度、高度、围度和角度共9个足型特征指标,为构建符合我国青年男性足型常模数据和足踝生物力学研究提供理论和数据支持。 展开更多
关键词 足型 特征提取 谱聚类 多融合算法 深度神经网络 逐层相关传播
在线阅读 下载PDF
基于双向多层级交互网络的肺部CT图像分类
16
作者 龙肖 黄巍 胡凯 《计算机科学》 北大核心 2025年第S1期85-90,共6页
近年来,基于局部窗口的Self-Attention机制在视觉分类任务中表现突出。然而,由于存在感受野有限和建模能力弱的问题,其在处理复杂数据时效果不佳。肺部CT图像中的特征复杂多样,包括结节的形状、大小、密度等,给深入挖掘数据中的深层次... 近年来,基于局部窗口的Self-Attention机制在视觉分类任务中表现突出。然而,由于存在感受野有限和建模能力弱的问题,其在处理复杂数据时效果不佳。肺部CT图像中的特征复杂多样,包括结节的形状、大小、密度等,给深入挖掘数据中的深层次特征带来挑战。针对这些问题,文中提出了一个全新的双向多层级交互网络模型Bi-directional Multi-level Interaction Vision Transformer(Bi-MI ViT)。该网络通过双向多层级交互机制有效融合空间和通道信息,从而显著提升特征提取的准确性和全面性。在Transformer分支中,引入了高效的级联组注意力机制,旨在丰富注意力头特征的多样性,并增强模型对关键信息的捕捉能力。同时,在卷积神经网络(Convolutional Neural Networks,CNNs)分支中,通过设计DP block,并利用点卷积(Point-Wise Convolution,PW)和深度卷积(Depth-Wise Convolution,DW)深入挖掘局部信息,以优化模型的表达能力。此外,深度特征提取模块(Deep Feature Extraction,DFE)的建立增强了特征传播和复用,提高了数据利用效率,实现了实质性的性能改进。实验结果显示,在公开的COVID19-CT数据集和私有的LUAD-CT数据集上,所提算法优于对比的8种方法,实现了准确分类。 展开更多
关键词 肺部CT图像 双向多层级交互 卷积神经网络 TRANSFORMER 分类
在线阅读 下载PDF
一种多尺度循环残差注意的单幅图像去雨方法
17
作者 刘邱铃 周刚 乔敏 《计算机应用与软件》 北大核心 2025年第2期236-240,279,共6页
目前基于卷积神经网络的去雨方法,存在雨纹残留、图像模糊等问题。为此提出一种基于多尺度特征提取和循环残差注意的单幅图像去雨方法。通过构建多尺度拉普拉斯金字塔得到多尺度特征图,再设计循环残差注意模块加强阶段间联系、提取深度... 目前基于卷积神经网络的去雨方法,存在雨纹残留、图像模糊等问题。为此提出一种基于多尺度特征提取和循环残差注意的单幅图像去雨方法。通过构建多尺度拉普拉斯金字塔得到多尺度特征图,再设计循环残差注意模块加强阶段间联系、提取深度特征、增强重要特征权重,更好地去除雨纹并保留了图像细节。实验结果表明,该方法的去雨效果优于其他去雨算法。 展开更多
关键词 卷积神经网络 单幅图像去雨 多层拉普拉斯金字塔 多尺度特征图 循环残差注意模块
在线阅读 下载PDF
基于跨层连接与多尺度自注意的金属表面缺陷检测
18
作者 朱生升 王炎 刘锁兰 《计算机工程与设计》 北大核心 2025年第8期2396-2402,共7页
针对特征提取中池化下采样导致的信息损失影响检测精度问题,提出了一种融合跨层连接与多尺度自注意机制的缺陷检测模型。跨层连接模块通过融合深浅层特征,以弥补因池化导致的信息丢失。同时,多尺度自注意模块捕获多尺度特征,增强模型学... 针对特征提取中池化下采样导致的信息损失影响检测精度问题,提出了一种融合跨层连接与多尺度自注意机制的缺陷检测模型。跨层连接模块通过融合深浅层特征,以弥补因池化导致的信息丢失。同时,多尺度自注意模块捕获多尺度特征,增强模型学习和获取缺陷特征的能力。在KSDD、KSDD2和STEEL数据集上,测试结果均有一定程度提升。KSDD2数据集上与最新的算法对比,在图像级标注下精度(AP)提升了11.7%,在像素级标注下精度(AP)提升了1.0%,实验结果表明了所提方法的有效性。 展开更多
关键词 深度学习 缺陷检测 跨层连接 多尺度 自注意 卷积神经网络 特征提取
在线阅读 下载PDF
基于深度学习和VMD算法的电力系统低频振荡模态辨识
19
作者 王珍意 朱欣春 +5 位作者 胡斌 路学刚 张斌 杜思君 徐添锐 丁涛 《电工电能新技术》 北大核心 2025年第5期56-65,共10页
随着现代电力系统不断发展,大规模的电力互联网络结构逐渐形成,这使得电力系统中的低频振荡现象显著增加,对电力系统的安全和稳定运行构成了严峻的挑战。对低频振荡信号中的模态进行辨识是采取适当的措施或策略来抑制电力系统中的低频... 随着现代电力系统不断发展,大规模的电力互联网络结构逐渐形成,这使得电力系统中的低频振荡现象显著增加,对电力系统的安全和稳定运行构成了严峻的挑战。对低频振荡信号中的模态进行辨识是采取适当的措施或策略来抑制电力系统中的低频振荡的重要前提。为此,本文提出一种基于深度学习和变分模态分解的电力系统低频振荡模态辨识方法。该方法首先利用变分模态分解算法对低频振荡信号进行降噪处理;其次通过卷积神经网络对降噪后的低频振荡信号的阶数进行识别,并在此基础上结合变分模态分解算法进行低频振荡信号的模态分离;最后采用多层感知机辨识分离出的各低频振荡模态的参数,从而完成低频振荡的模态辨识。多个算例仿真结果验证了本文所提方法在电力系统低频振荡模态辨识中的有效性和准确性。 展开更多
关键词 深度学习 变分模态分解 现代电力系统 低频振荡 卷积神经网络 多层感知机
在线阅读 下载PDF
基于GWO-BP模型与MOMPA算法的插秧机车架轻量化设计 被引量:1
20
作者 陈岁繁 侯万森 +3 位作者 张浩南 李其朋 夏琪玮 陈问池 《机电工程》 北大核心 2025年第5期933-944,共12页
为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其... 为实现水稻插秧机车架的轻量化目标,提出了基于灰狼优化反向传播神经网络(GWO-BP)模型与多目标海洋捕食者算法(MOMPA)的联合优化方法。首先,对GWO-BP模型与MOMPA优化算法的构建进行了理论分析,建立了车架的三维模型和有限元模型,并对其性能进行了仿真;然后,采用灵敏度分析确定了可作为优化设计变量的8个主要结构参数,并利用实验设计的方法计算出设计变量与目标参数之间响应关系的数据,从而建立了GWO-BP近似模型,联合近似模型与MOMPA优化算法,以车架质量、最大变形最小为优化目标,求出了轻量化车架的最优结构参数组合;最后,对车架优化结果进行了验证,同时,分析了车架模态性能,并建立了车架样机,通过试验验证了车架轻量化结果。研究结果表明:车架质量、车架最大变形和最大等效应力的拟合精度分别为0.998 8、0.987 8、0.986 7,建立的近似模型具有较高精度;优化后车架质量比原车架降低了9.26%;优化结果与仿真结果误差在2%以内,且优化后车架固有频率可以有效避开外界激励,通过对比优化前后车架质量及性能,确定了优化结果的准确性与有效性;根据优化结果制造了轻量化车架的样机,其整体质量较原车架减轻了10.3%,达到了良好的轻量化效果,为农机车架轻量化研究提供了一定的借鉴。 展开更多
关键词 水稻插秧机 轻量化 灰狼优化反向传播神经网络 多目标海洋捕食者优化算法 车架模态分析
在线阅读 下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部