A pre-processing procedure is designed for a space-surface bistatic synthetic aperture radar (SS-BSAR) system when a time domain image formation algorithm is employed. Three crucial technical issues relating to the ...A pre-processing procedure is designed for a space-surface bistatic synthetic aperture radar (SS-BSAR) system when a time domain image formation algorithm is employed. Three crucial technical issues relating to the procedure are fully discussed. Firstly, unlike image formation algorithms operating in the frequency domain, a time domain algorithm requires the accurate global navigation satellite system (GNSS) time and position. This paper proposes acquisition of this information using a time-and-spatial transfer with precise ephemeris and interpolation. Secondly, synchronization errors and compensation methods in SS-BSAR are analyzed. Finally, taking the non-ideal factors in the echo and the compatibility of image formation algorithms into account, a matched filter based on the minimum delay is constructed. Experimental result using real data suggest the pre-processing is functioning properly.展开更多
针对无人机航拍图像中存在小目标、目标遮挡、背景复杂的问题,提出一种基于高效特征提取和大感受野的目标检测网络(efficient feature and large receptive field network,EFLF-Net)。通过优化检测层架构降低小目标漏检率;在主干网络融...针对无人机航拍图像中存在小目标、目标遮挡、背景复杂的问题,提出一种基于高效特征提取和大感受野的目标检测网络(efficient feature and large receptive field network,EFLF-Net)。通过优化检测层架构降低小目标漏检率;在主干网络融合新的构建模块以提升特征提取效率;引入内容感知特征重组模块和大型选择性核网络,增强颈部网络对遮挡目标的上下文感知能力;采用Wise-IoU损失函数优化边界框回归稳定性。在VisDrone2019数据集上的实验结果表明,EFLF-Net较基准模型在平均精度上提高了5.2%。与已有代表性的目标检测算法相比,该方法对存在小目标、目标相互遮挡和复杂背景的无人机航拍图像有更好的检测效果。展开更多
基金supported by the Electro-Magnetic Remote Sensing Defence Technology Centre (EMRS-DTC) of the UK Ministry of Defence(EMRS/DTC/1/27)the China Scholarship Council (2009611064)the Program for New Century Excellent Talents in University (NCET-07-0223)
文摘A pre-processing procedure is designed for a space-surface bistatic synthetic aperture radar (SS-BSAR) system when a time domain image formation algorithm is employed. Three crucial technical issues relating to the procedure are fully discussed. Firstly, unlike image formation algorithms operating in the frequency domain, a time domain algorithm requires the accurate global navigation satellite system (GNSS) time and position. This paper proposes acquisition of this information using a time-and-spatial transfer with precise ephemeris and interpolation. Secondly, synchronization errors and compensation methods in SS-BSAR are analyzed. Finally, taking the non-ideal factors in the echo and the compatibility of image formation algorithms into account, a matched filter based on the minimum delay is constructed. Experimental result using real data suggest the pre-processing is functioning properly.
文摘针对无人机航拍图像中存在小目标、目标遮挡、背景复杂的问题,提出一种基于高效特征提取和大感受野的目标检测网络(efficient feature and large receptive field network,EFLF-Net)。通过优化检测层架构降低小目标漏检率;在主干网络融合新的构建模块以提升特征提取效率;引入内容感知特征重组模块和大型选择性核网络,增强颈部网络对遮挡目标的上下文感知能力;采用Wise-IoU损失函数优化边界框回归稳定性。在VisDrone2019数据集上的实验结果表明,EFLF-Net较基准模型在平均精度上提高了5.2%。与已有代表性的目标检测算法相比,该方法对存在小目标、目标相互遮挡和复杂背景的无人机航拍图像有更好的检测效果。
文摘前视合成孔径雷达(Synthetic Aperture Radar,SAR)在舰船成像方面展现出了巨大潜力,特别是在SAR导引头的应用上,弹载雷达通常在末制导阶段要求雷达正对着舰船运动,以实现精准打击。针对前视条件下传统SAR成像方法所面临的挑战,本文提出了一种基于极坐标格式算法(Polar Format Algorithm,PFA)的前视SAR舰船目标立面成像方法。该方法巧妙利用了舰船的三维特性,即使雷达工作在前视模式下,虽然在方位向上无法有效分辨目标,但在俯仰向上仍然存在多普勒频率的变化,因此可以在距离向和俯仰向上实现对舰船的二维高分辨率成像。此外,这种成像方法能够提供更为直观的舰船立面图像,这对于识别舰船类型、判断潜在威胁以及对其进行精准打击具有重大意义。最后,通过仿真实验对该方法进行了验证,利用PFA获得了清晰的舰船立面图像。