With the continuous development of power electronic devices,intelligent control systems,and other technologies,the voltage level and transmission capacity of voltage source converter (VSC)-high-voltage direct current ...With the continuous development of power electronic devices,intelligent control systems,and other technologies,the voltage level and transmission capacity of voltage source converter (VSC)-high-voltage direct current (HVDC) technology will continue to increase,while the system losses and costs will gradually decrease.Therefore,it can be foreseen that VSC-HVDC transmission technology will be more widely applied in future large-scale renewable energy development projects.Adopting VSC-HVDC transmission technology can be used to overcome issues encountered by large-scale renewable energy transmission and integration projects,such as a weak local power grid,lack of support for synchronous power supply,and insufficient accommodation capacity.However,this solution also faces many technical challenges because of the differences between renewable energy and traditional synchronous power generation systems.Based on actual engineering practices that are used worldwide,this article analyzes the technical challenges encountered by integrating large-scale renewable energy systems that adopt the use of VSC-HVDC technology,while aiming to provide support for future research and engineering projects related to VSC-HVDC-based large-scale renewable energy integration projects.展开更多
Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys...Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys design and development,which enables the design and development of Al alloys to upgrade from traditional empirical to the integration of compositionprocess-structure-mechanical property,thus greatly accelerating its development speed and reducing its development cost.This study combines calculation of phase diagram(CALPHAD),Finite element calculations,first principle calculations,and microstructure characterization methods to predict and regulate the formation and structure of composite precipitates from the design of highmodulus Al alloy compositions and optimize the casting process parameters to inhibit the formation of micropore defects in the casting process,and the final tensile strength of Al alloys reaches420 MPa and Young's modulus reaches more than 88 GPa,which achieves the design goal of the high strength and modulus Al alloys,and establishes a new mode of the design and development of the strength/modulus Al alloys.展开更多
In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solut...In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.展开更多
Data were collected from Three-north Region, Middle and upper reaches region of Yangtze River and Coastal region. By analysis of factors influencing soil erosion, the longitude, latitude, annual precipitation, and the...Data were collected from Three-north Region, Middle and upper reaches region of Yangtze River and Coastal region. By analysis of factors influencing soil erosion, the longitude, latitude, annual precipitation, and the slope degree were selected as regional independent variables and canopy density and stock litter were selected as independent variables, and integral diffusing models were established for evaluation of the benefit of soil and water conservation of forest. By solving the parameters of models using the package of STATISTICA, the Power function between independent variables and dependent variables was set up. The soil conservation amount of forest and economic values were estimated using the contrast method for the ecological forestry engineering of the above three areas.展开更多
Various application domains require the integration of distributed real-time or near-real-time systems with non-real-time systems.Smart cities,smart homes,ambient intelligent systems,or network-centric defense systems...Various application domains require the integration of distributed real-time or near-real-time systems with non-real-time systems.Smart cities,smart homes,ambient intelligent systems,or network-centric defense systems are among these application domains.Data Distribution Service(DDS)is a communication mechanism based on Data-Centric Publish-Subscribe(DCPS)model.It is used for distributed systems with real-time operational constraints.Java Message Service(JMS)is a messaging standard for enterprise systems using Service Oriented Architecture(SOA)for non-real-time operations.JMS allows Java programs to exchange messages in a loosely coupled fashion.JMS also supports sending and receiving messages using a messaging queue and a publish-subscribe interface.In this article,we propose an architecture enabling the automated integration of distributed real-time and non-real-time systems.We test our proposed architecture using a distributed Command,Control,Communications,Computers,and Intelligence(C4I)system.The system has DDS-based real-time Combat Management System components deployed to naval warships,and SOA-based non-real-time Command and Control components used at headquarters.The proposed solution enables the exchange of data between these two systems efficiently.We compare the proposed solution with a similar study.Our solution is superior in terms of automation support,ease of implementation,scalability,and performance.展开更多
The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research...The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research are taken. A control unit for the fuel quantity and timing in crankshaft domain is designed on this basis and the engine experiment test has been done. For the constant speed camshaft driving EUP system, the fuel quantity will increase as the supply angle goes up and injection timing has no effect. The control precision can reach 1°CA. The full injection timing MAP and engine peak performance curves are made successfully.展开更多
基金State Grid Corporation of China Science and Technology Project: Research on Power Transmission of Largescale Renewable Energy Base by VSC-LCC hybrid HVDC(No. NY71-19-037)
文摘With the continuous development of power electronic devices,intelligent control systems,and other technologies,the voltage level and transmission capacity of voltage source converter (VSC)-high-voltage direct current (HVDC) technology will continue to increase,while the system losses and costs will gradually decrease.Therefore,it can be foreseen that VSC-HVDC transmission technology will be more widely applied in future large-scale renewable energy development projects.Adopting VSC-HVDC transmission technology can be used to overcome issues encountered by large-scale renewable energy transmission and integration projects,such as a weak local power grid,lack of support for synchronous power supply,and insufficient accommodation capacity.However,this solution also faces many technical challenges because of the differences between renewable energy and traditional synchronous power generation systems.Based on actual engineering practices that are used worldwide,this article analyzes the technical challenges encountered by integrating large-scale renewable energy systems that adopt the use of VSC-HVDC technology,while aiming to provide support for future research and engineering projects related to VSC-HVDC-based large-scale renewable energy integration projects.
基金supported by the National Natural Science Foundation of China(No.52073030)。
文摘Integrated computational materials engineering(ICME)is to integrate multi-scale computational simulations and key experimental methods such as macroscopic,mesoscopic,and microscopic into the whole process of Al alloys design and development,which enables the design and development of Al alloys to upgrade from traditional empirical to the integration of compositionprocess-structure-mechanical property,thus greatly accelerating its development speed and reducing its development cost.This study combines calculation of phase diagram(CALPHAD),Finite element calculations,first principle calculations,and microstructure characterization methods to predict and regulate the formation and structure of composite precipitates from the design of highmodulus Al alloy compositions and optimize the casting process parameters to inhibit the formation of micropore defects in the casting process,and the final tensile strength of Al alloys reaches420 MPa and Young's modulus reaches more than 88 GPa,which achieves the design goal of the high strength and modulus Al alloys,and establishes a new mode of the design and development of the strength/modulus Al alloys.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.52008404,U1934217 and 11790283)Science and Technology Research and Development Program Project of China Railway Group Limited(Major Special Project,No.2020-Special-02)the National Natural Science Foundation of Hunan Province(Grant No.2021JJ30850).
文摘In this work,a method is put forward to obtain the dynamic solution efficiently and accurately for a large-scale train-track-substructure(TTS)system.It is called implicit-explicit integration and multi-time-step solution method(abbreviated as mI-nE-MTS method).The TTS system is divided into train-track subsystem and substruc-ture subsystem.Considering that the root cause of low effi-ciency of obtaining TTS solution lies in solving the alge-braic equation of the substructures,the high-efficient Zhai method,an explicit integration scheme,can be introduced to avoid matrix inversion process.The train-track system is solved by implicitly Park method.Moreover,it is known that the requirement of time step size differs for different sub-systems,integration methods and structural frequency response characteristics.A multi-time-step solution is pro-posed,in which time step size for the train-track subsystem and the substructure subsystem can be arbitrarily chosen once satisfying stability and precision demand,namely the time spent for m implicit integral steps is equal to n explicit integral steps,i.e.,mI=nE as mentioned above.The numeri-cal examples show the accuracy,efficiency,and engineering practicality of the proposed method.
文摘Data were collected from Three-north Region, Middle and upper reaches region of Yangtze River and Coastal region. By analysis of factors influencing soil erosion, the longitude, latitude, annual precipitation, and the slope degree were selected as regional independent variables and canopy density and stock litter were selected as independent variables, and integral diffusing models were established for evaluation of the benefit of soil and water conservation of forest. By solving the parameters of models using the package of STATISTICA, the Power function between independent variables and dependent variables was set up. The soil conservation amount of forest and economic values were estimated using the contrast method for the ecological forestry engineering of the above three areas.
文摘Various application domains require the integration of distributed real-time or near-real-time systems with non-real-time systems.Smart cities,smart homes,ambient intelligent systems,or network-centric defense systems are among these application domains.Data Distribution Service(DDS)is a communication mechanism based on Data-Centric Publish-Subscribe(DCPS)model.It is used for distributed systems with real-time operational constraints.Java Message Service(JMS)is a messaging standard for enterprise systems using Service Oriented Architecture(SOA)for non-real-time operations.JMS allows Java programs to exchange messages in a loosely coupled fashion.JMS also supports sending and receiving messages using a messaging queue and a publish-subscribe interface.In this article,we propose an architecture enabling the automated integration of distributed real-time and non-real-time systems.We test our proposed architecture using a distributed Command,Control,Communications,Computers,and Intelligence(C4I)system.The system has DDS-based real-time Combat Management System components deployed to naval warships,and SOA-based non-real-time Command and Control components used at headquarters.The proposed solution enables the exchange of data between these two systems efficiently.We compare the proposed solution with a similar study.Our solution is superior in terms of automation support,ease of implementation,scalability,and performance.
文摘The performance of the electronic unit pump (EUP) diesel engine is studied, it will be used in the integrated powertrain and its multi parameters are controllable. Both the theoretical analysis and experiment research are taken. A control unit for the fuel quantity and timing in crankshaft domain is designed on this basis and the engine experiment test has been done. For the constant speed camshaft driving EUP system, the fuel quantity will increase as the supply angle goes up and injection timing has no effect. The control precision can reach 1°CA. The full injection timing MAP and engine peak performance curves are made successfully.