Although numerous studies have proposed explanations for the specific and relative effects of stand structure,plant diversity,and environmental conditions on carbon(C)storage in forest ecosystems,understanding how the...Although numerous studies have proposed explanations for the specific and relative effects of stand structure,plant diversity,and environmental conditions on carbon(C)storage in forest ecosystems,understanding how these factors collectively affect C storage in different community layers(trees,shrubs,and herbs)and forest types(mixed,broad-leaved(E),broad-leaved(M),and coniferous forest)continues to pose challenges.To address this,we used structural equation models to quantify the influence of biotic factors(mean DBH,mean height,maximum height,stem density,and basal area)and abiotic factors(elevation and canopy openness),as well as metrics of species diversity(Shannon–Wiener index,Simpson index,and Pielou’s evenness)in various forest types.Our analysis revealed the critical roles of forest types and elevation in explaining a substantial portion of variability in C storage in the overstory layer,with a moderate influence of stand factors(mean DBH and basal area)and a slightly negative impact of tree species diversity(Shannon–Wiener index).Notably,forest height emerged as the primary predictor of C storage in the herb layer.Regression relationships further highlighted the significant contribution of tree species diversity to mean height,understory C storage,and branch biomass within the forest ecosystem.Our insights into tree species diversity,derived from structural equation modeling of C storage in the overstory,suggest that the effects of tree species diversity may be influenced by stem biomass in statistical reasoning within temperate forests.Further research should also integrate tree species diversity with tree components biomass,forest mean height,understory C,and canopy openness to understand complex relationships and maintain healthy and sustainable ecosystems in the face of global climate challenges.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(2021ZY89)the National Natural Science Foundation of China(32201258 and 32271652)+4 种基金Research Service Project on the Effects of Extreme Climate on Biodiversity and Conservation Strategies in Mentougou District(2024HXFWBH-XJL-02)the Fang Jingyun Ecological Study Studio of Yunnan Province(China)the State Scholarship Fund of China(2011811457)support to the Xingdian Scholar Fund of Yunnan Provincethe Double Top University Fund of Yunnan University.
文摘Although numerous studies have proposed explanations for the specific and relative effects of stand structure,plant diversity,and environmental conditions on carbon(C)storage in forest ecosystems,understanding how these factors collectively affect C storage in different community layers(trees,shrubs,and herbs)and forest types(mixed,broad-leaved(E),broad-leaved(M),and coniferous forest)continues to pose challenges.To address this,we used structural equation models to quantify the influence of biotic factors(mean DBH,mean height,maximum height,stem density,and basal area)and abiotic factors(elevation and canopy openness),as well as metrics of species diversity(Shannon–Wiener index,Simpson index,and Pielou’s evenness)in various forest types.Our analysis revealed the critical roles of forest types and elevation in explaining a substantial portion of variability in C storage in the overstory layer,with a moderate influence of stand factors(mean DBH and basal area)and a slightly negative impact of tree species diversity(Shannon–Wiener index).Notably,forest height emerged as the primary predictor of C storage in the herb layer.Regression relationships further highlighted the significant contribution of tree species diversity to mean height,understory C storage,and branch biomass within the forest ecosystem.Our insights into tree species diversity,derived from structural equation modeling of C storage in the overstory,suggest that the effects of tree species diversity may be influenced by stem biomass in statistical reasoning within temperate forests.Further research should also integrate tree species diversity with tree components biomass,forest mean height,understory C,and canopy openness to understand complex relationships and maintain healthy and sustainable ecosystems in the face of global climate challenges.