期刊文献+
共找到38,524篇文章
< 1 2 250 >
每页显示 20 50 100
Knowledge mining collaborative DESVM correction method in short-term load forecasting 被引量:3
1
作者 牛东晓 王建军 刘金朋 《Journal of Central South University》 SCIE EI CAS 2011年第4期1211-1216,共6页
Short-term forecasting is a difficult problem because of the influence of non-linear factors and irregular events.A novel short-term forecasting method named TIK was proposed,in which ARMA forecasting model was used t... Short-term forecasting is a difficult problem because of the influence of non-linear factors and irregular events.A novel short-term forecasting method named TIK was proposed,in which ARMA forecasting model was used to consider the load time series trend forecasting,intelligence forecasting DESVR model was applied to estimate the non-linear influence,and knowledge mining methods were applied to correct the errors caused by irregular events.In order to prove the effectiveness of the proposed model,an application of the daily maximum load forecasting was evaluated.The experimental results show that the DESVR model improves the mean absolute percentage error(MAPE) from 2.82% to 2.55%,and the knowledge rules can improve the MAPE from 2.55% to 2.30%.Compared with the single ARMA forecasting method and ARMA combined SVR forecasting method,it can be proved that TIK method gains the best performance in short-term load forecasting. 展开更多
关键词 load forecasting support vector regression knowledge mining ARMA differential evolution
在线阅读 下载PDF
Research on Short-Term Electric Load Forecasting Using IWOA CNN-BiLSTM-TPA Model
2
作者 MEI Tong-da SI Zhan-jun ZHANG Ying-xue 《印刷与数字媒体技术研究》 北大核心 2025年第1期179-187,共9页
Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devi... Load forecasting is of great significance to the development of new power systems.With the advancement of smart grids,the integration and distribution of distributed renewable energy sources and power electronics devices have made power load data increasingly complex and volatile.This places higher demands on the prediction and analysis of power loads.In order to improve the prediction accuracy of short-term power load,a CNN-BiLSTMTPA short-term power prediction model based on the Improved Whale Optimization Algorithm(IWOA)with mixed strategies was proposed.Firstly,the model combined the Convolutional Neural Network(CNN)with the Bidirectional Long Short-Term Memory Network(BiLSTM)to fully extract the spatio-temporal characteristics of the load data itself.Then,the Temporal Pattern Attention(TPA)mechanism was introduced into the CNN-BiLSTM model to automatically assign corresponding weights to the hidden states of the BiLSTM.This allowed the model to differentiate the importance of load sequences at different time intervals.At the same time,in order to solve the problem of the difficulties of selecting the parameters of the temporal model,and the poor global search ability of the whale algorithm,which is easy to fall into the local optimization,the whale algorithm(IWOA)was optimized by using the hybrid strategy of Tent chaos mapping and Levy flight strategy,so as to better search the parameters of the model.In this experiment,the real load data of a region in Zhejiang was taken as an example to analyze,and the prediction accuracy(R2)of the proposed method reached 98.83%.Compared with the prediction models such as BP,WOA-CNN-BiLSTM,SSA-CNN-BiLSTM,CNN-BiGRU-Attention,etc.,the experimental results showed that the model proposed in this study has a higher prediction accuracy. 展开更多
关键词 Whale Optimization Algorithm Convolutional Neural Network Long Short-Term Memory Temporal Pattern Attention Power load forecasting
在线阅读 下载PDF
Research on variable-speed scanning method for airborne area-array whiskbroom imaging system based on vertical flight path correction
3
作者 JIN Jia-Rong HAN Gui-Cheng +2 位作者 ANG Chong-Ru WU Ren-Fei WANG Yue-Ming 《红外与毫米波学报》 北大核心 2025年第4期511-519,共9页
Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,redu... Airborne area-array whisk-broom imaging systems typically adopt constant-speed scanning schemes.For large-inertia scanning systems,constant-speed scanning requires substantial time to complete the reversal motion,reducing the system's adaptability to high-speed reversal scanning and decreasing scanning efficiency.This study proposes a novel sinusoidal variable-speed roll scanning strategy,which reduces abrupt changes in speed and acceleration,minimizing time loss during reversals.Based on the forward image motion compensation strategy in the pitch direction,we establish a line-of-sight(LOS)position calculation model with vertical flight path correction(VFPC),ensuring that the central LOS of the scanned image remains stable on the same horizontal line,facilitating accurate image stitching in whisk-broom imaging.Through theoretical analysis and simulation experiments,the proposed method improves the scanning efficiency by approximately 18.6%at a 90o whiskbroom imaging angle under the same speed height ratio conditions.The new VFPC method enables wide-field,high-resolution imaging,achieving single-line LOS horizontal stability with an accuracy of better than O.4 mrad.The research is of great significance to promote the further development of airborne area-array whisk-broom imaging technology toward wider fields of view,higher speed height ratios,and greater scanning efficiency. 展开更多
关键词 airborne remote sensing whisk-broom imaging image motion vertical flight path correction(VFPC) line-of-sight(LOS)stabilization
在线阅读 下载PDF
PM_(2.5) probabilistic forecasting system based on graph generative network with graph U-nets architecture
4
作者 LI Yan-fei YANG Rui +1 位作者 DUAN Zhu LIU Hui 《Journal of Central South University》 2025年第1期304-318,共15页
Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific ... Urban air pollution has brought great troubles to physical and mental health,economic development,environmental protection,and other aspects.Predicting the changes and trends of air pollution can provide a scientific basis for governance and prevention efforts.In this paper,we propose an interval prediction method that considers the spatio-temporal characteristic information of PM_(2.5)signals from multiple stations.K-nearest neighbor(KNN)algorithm interpolates the lost signals in the process of collection,transmission,and storage to ensure the continuity of data.Graph generative network(GGN)is used to process time-series meteorological data with complex structures.The graph U-Nets framework is introduced into the GGN model to enhance its controllability to the graph generation process,which is beneficial to improve the efficiency and robustness of the model.In addition,sparse Bayesian regression is incorporated to improve the dimensional disaster defect of traditional kernel density estimation(KDE)interval prediction.With the support of sparse strategy,sparse Bayesian regression kernel density estimation(SBR-KDE)is very efficient in processing high-dimensional large-scale data.The PM_(2.5)data of spring,summer,autumn,and winter from 34 air quality monitoring sites in Beijing verified the accuracy,generalization,and superiority of the proposed model in interval prediction. 展开更多
关键词 PM_(2.5)interval forecasting graph generative network graph U-Nets sparse Bayesian regression kernel density estimation spatial-temporal characteristics
在线阅读 下载PDF
Research on aiming methods for small sample size shooting tests of two-dimensional trajectory correction fuse 被引量:1
5
作者 Chen Liang Qiang Shen +4 位作者 Zilong Deng Hongyun Li Wenyang Pu Lingyun Tian Ziyang Lin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期506-517,共12页
The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction ... The longitudinal dispersion of the projectile in shooting tests of two-dimensional trajectory corrections fused with fixed canards is extremely large that it sometimes exceeds the correction ability of the correction fuse actuator.The impact point easily deviates from the target,and thus the correction result cannot be readily evaluated.However,the cost of shooting tests is considerably high to conduct many tests for data collection.To address this issue,this study proposes an aiming method for shooting tests based on small sample size.The proposed method uses the Bootstrap method to expand the test data;repeatedly iterates and corrects the position of the simulated theoretical impact points through an improved compatibility test method;and dynamically adjusts the weight of the prior distribution of simulation results based on Kullback-Leibler divergence,which to some extent avoids the real data being"submerged"by the simulation data and achieves the fusion Bayesian estimation of the dispersion center.The experimental results show that when the simulation accuracy is sufficiently high,the proposed method yields a smaller mean-square deviation in estimating the dispersion center and higher shooting accuracy than those of the three comparison methods,which is more conducive to reflecting the effect of the control algorithm and facilitating test personnel to iterate their proposed structures and algorithms.;in addition,this study provides a knowledge base for further comprehensive studies in the future. 展开更多
关键词 Two-dimensional trajectory correction fuse Small sample size test Compatibility test KL divergence Fusion bayesian estimation
在线阅读 下载PDF
Artificial Intelligence Based Meteorological Parameter Forecasting for Optimizing Response of Nuclear Emergency Decision Support System
6
作者 BILAL Ahmed Khan HASEEB ur Rehman +5 位作者 QAISAR Nadeem MUHAMMAD Ahmad Naveed Qureshi JAWARIA Ahad MUHAMMAD Naveed Akhtar AMJAD Farooq MASROOR Ahmad 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第10期2068-2076,共9页
This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weat... This paper presents a novel artificial intelligence (AI) based approach to predict crucial meteorological parameters such as temperature,pressure,and wind speed,typically calculated from computationally intensive weather research and forecasting (WRF) model.Accurate meteorological data is indispensable for simulating the release of radioactive effluents,especially in dispersion modeling for nuclear emergency decision support systems.Simulation of meteorological conditions during nuclear emergencies using the conventional WRF model is very complex and time-consuming.Therefore,a new artificial neural network (ANN) based technique was proposed as a viable alternative for meteorological prediction.A multi-input multi-output neural network was trained using historical site-specific meteorological data to forecast the meteorological parameters.Comprehensive evaluation of this technique was conducted to test its performance in forecasting various parameters including atmospheric pressure,temperature,and wind speed components in both East-West and North-South directions.The performance of developed network was evaluated on an unknown dataset,and acquired results are within the acceptable range for all meteorological parameters.Results show that ANNs possess the capability to forecast meteorological parameters,such as temperature and pressure,at multiple spatial locations within a grid with high accuracy,utilizing input data from a single station.However,accuracy is slightly compromised when predicting wind speed components.Root mean square error (RMSE) was utilized to report the accuracy of predicted results,with values of 1.453℃for temperature,77 Pa for predicted pressure,1.058 m/s for the wind speed of U-component and 0.959 m/s for the wind speed of V-component.In conclusion,this approach offers a precise,efficient,and wellinformed method for administrative decision-making during nuclear emergencies. 展开更多
关键词 prediction of meteorological parameters weather research and forecasting model artificial neural networks nuclear emergency support system
在线阅读 下载PDF
Rapid urban flood forecasting based on cellular automata and deep learning
7
作者 BAI Bing DONG Fei +1 位作者 LI Chuanqi WANG Wei 《水利水电技术(中英文)》 北大核心 2024年第12期17-28,共12页
[Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-d... [Objective]Urban floods are occurring more frequently because of global climate change and urbanization.Accordingly,urban rainstorm and flood forecasting has become a priority in urban hydrology research.However,two-dimensional hydrodynamic models execute calculations slowly,hindering the rapid simulation and forecasting of urban floods.To overcome this limitation and accelerate the speed and improve the accuracy of urban flood simulations and forecasting,numerical simulations and deep learning were combined to develop a more effective urban flood forecasting method.[Methods]Specifically,a cellular automata model was used to simulate the urban flood process and address the need to include a large number of datasets in the deep learning process.Meanwhile,to shorten the time required for urban flood forecasting,a convolutional neural network model was used to establish the mapping relationship between rainfall and inundation depth.[Results]The results show that the relative error of forecasting the maximum inundation depth in flood-prone locations is less than 10%,and the Nash efficiency coefficient of forecasting inundation depth series in flood-prone locations is greater than 0.75.[Conclusion]The result demonstrated that the proposed method could execute highly accurate simulations and quickly produce forecasts,illustrating its superiority as an urban flood forecasting technique. 展开更多
关键词 urban flooding flood-prone location cellular automata deep learning convolutional neural network rapid forecasting
在线阅读 下载PDF
Scale effect removal and range migration correction for hypersonic target coherent detection
8
作者 WU Shang SUN Zhi +4 位作者 JIANG Xingtao ZHANG Haonan DENG Jiangyun LI Xiaolong CUI Guolong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期14-23,共10页
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit... The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT. 展开更多
关键词 hypersonic target detection coherent integration(CI) scale effect(SE)removal range migration(RM)correction scaled location rotation transform(ScLRT)
在线阅读 下载PDF
A new grey forecasting model based on BP neural network and Markov chain 被引量:6
9
作者 李存斌 王恪铖 《Journal of Central South University of Technology》 EI 2007年第5期713-718,共6页
A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is eq... A new grey forecasting model based on BP neural network and Markov chain was proposed. In order to combine the grey forecasting model with neural network, an important theorem that the grey differential equation is equivalent to the time response model, was proved by analyzing the features of grey forecasting model(GM(1,1)). Based on this, the differential equation parameters were included in the network when the BP neural network was constructed, and the neural network was trained by extracting samples from grey system's known data. When BP network was converged, the whitened grey differential equation parameters were extracted and then the grey neural network forecasting model (GNNM(1,1)) was built. In order to reduce stochastic phenomenon in GNNM(1,1), the state transition probability between two states was defined and the Markov transition matrix was established by building the residual sequences between grey forecasting and actual value. Thus, the new grey forecasting model(MNNGM(1,1)) was proposed by combining Markov chain with GNNM(1,1). Based on the above discussion, three different approaches were put forward for forecasting China electricity demands. By comparing GM(1, 1) and GNNM(1,1) with the proposed model, the results indicate that the absolute mean error of MNNGM(1,1) is about 0.4 times of GNNM(1,1) and 0.2 times of GM(I, 1), and the mean square error of MNNGM(1,1) is about 0.25 times of GNNM(1,1) and 0.1 times of GM(1,1). 展开更多
关键词 grey forecasting model neural network Markov chain electricity demand forecasting
在线阅读 下载PDF
A hybrid decomposition-boosting model for short-term multi-step solar radiation forecasting with NARX neural network 被引量:4
10
作者 HUANG Jia-hao LIU Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期507-526,共20页
Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation c... Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation can ensure the safety of photovoltaic grids and improve the utilization efficiency of the solar energy systems.In the study,a new decomposition-boosting model using artificial intelligence is proposed to realize the solar radiation multi-step prediction.The proposed model includes four parts:signal decomposition(EWT),neural network(NARX),Adaboost and ARIMA.Three real solar radiation datasets from Changde,China were used to validate the efficiency of the proposed model.To verify the robustness of the multi-step prediction model,this experiment compared nine models and made 1,3,and 5 steps ahead predictions for the time series.It is verified that the proposed model has the best performance among all models. 展开更多
关键词 solar radiation forecasting multi-step forecasting smart hybrid model signal decomposition
在线阅读 下载PDF
A novel dense spectrum correction algorithm for extracting vibration signals in internal combustion engine and its application 被引量:3
11
作者 张志刚 鄂加强 张桂香 《Journal of Central South University》 SCIE EI CAS 2012年第10期2810-2815,共6页
The algorithm of dense spectrum correction has been raised and proved based on the correction of discrete spectrum by fast Fourier transform.The result of simulation shows that such algorithm has advantages of high ac... The algorithm of dense spectrum correction has been raised and proved based on the correction of discrete spectrum by fast Fourier transform.The result of simulation shows that such algorithm has advantages of high accuracy and small amount of calculation.The algorithm has been successfully applied to the analysis of vibration signals from internal combustion engine.To calculate discrete spectrum,fast Fourier transform has been used to calculate the discrete spectrum by the signals acquired by the sensors on the oil pan,and the signal has been extracted from the mixed signals. 展开更多
关键词 fast Fourier transform discrete spectrum correction dense spectrum correction signal extracting
在线阅读 下载PDF
Strategies for multi-step-ahead available parking spaces forecasting based on wavelet transform 被引量:6
12
作者 JI Yan-jie GAO Liang-peng +1 位作者 CHEN Xiao-shi GUO Wei-hong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1503-1512,共10页
A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of avail... A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies. 展开更多
关键词 available PARKING SPACES MULTI-STEP AHEAD time series forecasting wavelet transform forecasting STRATEGIES recursive multi-input MULTI-OUTPUT strategy
在线阅读 下载PDF
Interval grey number sequence prediction by using non-homogenous exponential discrete grey forecasting model 被引量:20
13
作者 Naiming Xie Sifeng Liu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第1期96-102,共7页
This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on th... This paper aims to study a new grey prediction approach and its solution for forecasting the main system variable whose accurate value could not be collected while the potential value set could be defined. Based on the traditional nonhomogenous discrete grey forecasting model(NDGM), the interval grey number and its algebra operations are redefined and combined with the NDGM model to construct a new interval grey number sequence prediction approach. The solving principle of the model is analyzed, the new accuracy evaluation indices, i.e. mean absolute percentage error of mean value sequence(MAPEM) and mean percent of interval sequence simulating value set covered(MPSVSC), are defined and, the procedure of the interval grey number sequence based the NDGM(IG-NDGM) is given out. Finally, a numerical case is used to test the modelling accuracy of the proposed model. Results show that the proposed approach could solve the interval grey number sequence prediction problem and it is much better than the traditional DGM(1,1) model and GM(1,1) model. 展开更多
关键词 grey number grey system theory INTERVAL discrete grey forecasting model non-homogeneous exponential sequence
在线阅读 下载PDF
Calculation and correction of magnetic object positioning error caused by magnetic field gradient tensor measurement 被引量:6
14
作者 WANG Sansheng ZHANG Mingji +1 位作者 ZHANG Ning GUO Qiang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第3期456-461,共6页
Magnetic field gradient tensor measurement is an important technique to obtain position information of magnetic objects. When using magnetic field sensors to measure magnetic field gradient as the coefficients of tens... Magnetic field gradient tensor measurement is an important technique to obtain position information of magnetic objects. When using magnetic field sensors to measure magnetic field gradient as the coefficients of tensor, field differentiation is generally approximated by field difference. As a result, magnetic objects positioning by magnetic field gradient tensor measurement always involves an inherent error caused by sensor sizes, leading to a reduction in detectable distance and detectable angle. In this paper, the inherent positioning error caused by magnetic field gradient tensor measurement is calculated and corrected by iterations based on the systematic position error distribution patterns. The results show that, the detectable distance range and the angle range of an ac magnetic object(2.44 Am^2@1 kHz) can be increased from(0.45 m, 0.75 m),(0?, 25?) to(0.30 m, 0.80 m),(0?,80?), respectively. 展开更多
关键词 magnetic dipole magnetic gradient tensor positioning error error correction
在线阅读 下载PDF
Impact Point Prediction and Lateral Correction Analysis of Two-dimensional Trajectory Correction Projectiles 被引量:8
15
作者 WANG Zhongyuan CHANG Sijiang 《Defence Technology(防务技术)》 SCIE EI CAS 2013年第1期64-69,共6页
Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also ... Compared with the one-dimensional trajectory correction technology which adjusts longitudinal range, not only does the two-dimensional trajectory correction technology adjust the force in velocity direction, but also need to modulate the lateral force or trajectory (perpendicular to the vertical plane of fire direction). Therefore, the structure of control cabin of two-dimensional trajectory correction projectile (TDTCP) is more complicated than that of one-dimensional trajectory correction projectile (ODTCP). To simplify the structure of control cabin of TDTCP and reduce the cost, a scheme of adding a damping disk to the control cabin of ODTCP has been developed recently. The damping disk is unfolded at the right moment during its flight to change the ballistic drift of spin stabilized projectile. For this technical scheme of TDTCP, a fast and accurate impact point prediction method based on extended Kalman filter is presented. An approximate formula for predicting the ballistic drift and trajectory correction quantity is deduced. And the lateral correction capability for different fire angles and its influencing factors are analyzed. All the work is valuable for further research. 展开更多
关键词 control and navigation technology of aerocraft trajectory correction damping disk TRAJECTORY ballistic drift impact point prediction
在线阅读 下载PDF
Applying GM(1,1) to Forecasting the Dynamic Variation of Groundwater in Chuang Ye Farm 被引量:4
16
作者 FUHong FUQiang XUYa-qin 《Journal of Northeast Agricultural University(English Edition)》 CAS 2003年第1期92-96,共5页
The area of well rice in the sanjiang Plain is incresing recently.At the same time,the groundwater resource has been wasted.Thus,the resource of groundwater is shortening.More and more area appears the phenomenon of ... The area of well rice in the sanjiang Plain is incresing recently.At the same time,the groundwater resource has been wasted.Thus,the resource of groundwater is shortening.More and more area appears the phenomenon of “hanger pump” and “funnel”.According to these problems the paper adopts Chuang Ye farm as the research base,through handle the data of groundwater,applying GM(1,1) to forecasting the dynamic variation of groundwater.The writer hopes to provide some references about using groundwater resource of the area in the future for readers. 展开更多
关键词 GM(1 1) GROUNDWATER forecasting Chuang Ye Farm
在线阅读 下载PDF
Ground target localization algorithm for semi-active laser terminalcorrection projectile 被引量:3
17
作者 Xing-long LI Wen-jin YAO +2 位作者 Li-kun ZHU Xiao-ming WANG Ji-yan YU 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2016年第3期234-241,共8页
A target localization algorithm,which uses the measurement information from onboard GPS and onboard laser detector to acquire the target position,is proposed to obtain the accurate position of ground target in real ti... A target localization algorithm,which uses the measurement information from onboard GPS and onboard laser detector to acquire the target position,is proposed to obtain the accurate position of ground target in real time in the trajectory correction process of semi-active laser terminal correction projectile.A target localization model is established according to projectile position,attitude and line-of-sight angle.The effects of measurement errors of projectile position,attitude and line-of-sight angle on localization accuracy at different quadrant elevation angles are analyzed through Monte-Carlo simulation.The simulation results show that the measurement error of line-of-sight angle has the largest influence on the localization accuracy.The localization accuracy decreases with the increase in quadrant elevation angle.However,the maximum localization accuracy is less than 7 m.The proposed algorithm meets the accuracy and real-time requirements of target localization. 展开更多
关键词 SEMI-ACTIVE LASER GUIDANCE TERMINAL correction PROJECTILE Target LOCALIZATION LOCALIZATION accuracy
在线阅读 下载PDF
A Novel Hybrid FA-Based LSSVR Learning Paradigm for Hydropower Consumption Forecasting 被引量:4
18
作者 TANG Ling WANG Zishu +2 位作者 LI Xinxie YU Lean ZHANG Guoxing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第5期1080-1101,共22页
Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support ... Due to the nonlinearity and nonstationary of hydropower market data, a novel hybrid learning paradigm is proposed to predict hydropower consumption, by incorporating firefly algorithm (FA) into least square support vector regression (LSSVR), i.e., FA-based LSSVR model. In the novel model, the powerful and effective artificial intelligence (AI) technique, i.e., LSSVR, is employed to forecast hydropower consumption. Furthermore, a promising AI optimization tool, i.e., FA, is espe- cially introduced to address the crucial but difficult task of parameters determination in LSSVR (e.g., hyper and kernel function parameters). With the Chinese hydropower consumption as sample data, the empirical study has statistically confirmed the superiority of the novel FA-based LSSVR model to other benchmark models (including existing popular traditional econometric models, AI models and similar hybrid LSSVRs with other popular parameter searching tools)~ in terms of level and direc- tional accuracy. The empirical results also imply that the hybrid FA-based LSSVR learning paradigm with powerful forecasting tool and parameters optimization method can be employed as an effective forecasting tool for not only hydropower consumption but also other complex data. 展开更多
关键词 Artificial intelligence firefly algorithm hybrid model hydropower consumption leastsquares support vector regression time series forecasting.
在线阅读 下载PDF
A New Method for Grey Forecasting Model Group 被引量:2
19
作者 李峰 王仲东 宋中民 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2002年第3期1-7,共7页
In order to describe the characteristics of some systems, such as the process of economic and product forecasting, a lot of discrete data may be used. Although they are discrete, the inside law can be founded by some ... In order to describe the characteristics of some systems, such as the process of economic and product forecasting, a lot of discrete data may be used. Although they are discrete, the inside law can be founded by some methods. For a series that the discrete degree is large and the integrated tendency is ascending, a new method for grey forecasting model group is given by the grey system theory. The method is that it firstly transforms original data, chooses some clique values and divides original data into groups by different clique values; then, it establishes non-equigap GM(1,1) model for different groups and searches forecasting area of original data by the solution of model. At the end of the paper, the result of reliability of forecasting value is obtained. It is shown that the method is feasible. 展开更多
关键词 forecasting Non-equigap GM(1 1) model Reliability.
在线阅读 下载PDF
Performance analysis and design of MIMO-OFDM system using concatenated forward error correction codes 被引量:3
20
作者 Arun Agarwal Saurabh N.Mehta 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1322-1343,共22页
This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shif... This work investigates the performance of various forward error correction codes, by which the MIMO-OFDM system is deployed. To ensure fair investigation, the performance of four modulations, namely, binary phase shift keying(BPSK), quadrature phase shift keying(QPSK), quadrature amplitude modulation(QAM)-16 and QAM-64 with four error correction codes(convolutional code(CC), Reed-Solomon code(RSC)+CC, low density parity check(LDPC)+CC, Turbo+CC) is studied under three channel models(additive white Guassian noise(AWGN), Rayleigh, Rician) and three different antenna configurations(2×2, 2×4, 4×4). The bit error rate(BER) and the peak signal to noise ratio(PSNR) are taken as the measures of performance. The binary data and the color image data are transmitted and the graphs are plotted for various modulations with different channels and error correction codes. Analysis on the performance measures confirm that the Turbo + CC code in 4×4 configurations exhibits better performance. 展开更多
关键词 bit ERROR rate (BER) convolutional CODE (CC) forward ERROR correction peak signal to noise ratio (PSNR) Turbo CODE
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部