A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooper...A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.展开更多
A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of ...A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach.展开更多
基金Project(61374051,61603387)supported by the National Natural Science Foundation of ChinaProjects(20150520112JH,20160414033GH)supported by the Scientific and Technological Development Plan in Jilin Province of ChinaProject(20150102)supported by Opening Funding of State Key Laboratory of Management and Control for Complex Systems,China
文摘A decentralized adaptive neural network sliding mode position/force control scheme is proposed for constrained reconfigurable manipulators. Different from the decentralized control strategy in multi-manipulator cooperation, the proposed decentralized position/force control scheme can be applied to series constrained reconfigurable manipulators. By multiplying each row of Jacobian matrix in the dynamics by contact force vector, the converted joint torque is obtained. Furthermore, using desired information of other joints instead of their actual values, the dynamics can be represented as a set of interconnected subsystems by model decomposition technique. An adaptive neural network controller is introduced to approximate the unknown dynamics of subsystem. The interconnection and the whole error term are removed by employing an adaptive sliding mode term. And then, the Lyapunov stability theory guarantees the stability of the closed-loop system. Finally, two reconfigurable manipulators with different configurations are employed to show the effectiveness of the proposed decentralized position/force control scheme.
基金This project was supported by the research foundation of China Education Ministry for the scholars from abroad (2002247).
文摘A learning-based control approach is presented for force servoing of a robot with vision in an unknown environment. Firstly, mapping relationships between image features of the servoing object and the joint angles of the robot are derived and learned by a neural network. Secondly, a learning controller based on the neural network is designed for the robot to trace the object. Thirdly, a discrete time impedance control law is obtained for the force servoing of the robot, the on-line learning algorithms for three neural networks are developed to adjust the impedance parameters of the robot in the unknown environment. Lastly, wiping experiments are carried out by using a 6 DOF industrial robot with a CCD camera and a force/torque sensor in its end effector, and the experimental results confirm the effecti veness of the approach.