In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through...In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete.展开更多
Sensitivity analysis is one of the effective methods in the dynamic modification. The sensitivity of the modal parameters such as the natural frequencies and mode shapes in undamped free vibration of mechanical transm...Sensitivity analysis is one of the effective methods in the dynamic modification. The sensitivity of the modal parameters such as the natural frequencies and mode shapes in undamped free vibration of mechanical transmission system is analyzed in this paper.In particular,the sensitivities of the modal parameters to physical parameters of shaft system such as the inertia and stiffness are given.A calculation formula for dynamic modification is presented based on the analysis of modal parameter.With a mechanical transmission system as an example, the sensitivities of natural frequencies and modes shape are calculated and analyzed. Furthermore, the dynamic modification is also carried out and a good result is obtained.展开更多
Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous...Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.展开更多
Ion parameters in electron cyclotron resonance (ECR) microwave plasma were measured by ion sensitive probe and were compared with the electron parameters obtained by double Langmuir probe. The effects of gas pressur...Ion parameters in electron cyclotron resonance (ECR) microwave plasma were measured by ion sensitive probe and were compared with the electron parameters obtained by double Langmuir probe. The effects of gas pressure and microwave power on the ion temperature and density were analyzed. The spatial distribution of the ion parameters was also investigated by the ion sensitive probes with a tunable radial depth installed on different probe windows along the chamber axis. Results showed that the ion density measured by the ion sensitive probe was in good agreement with the electron density measured by the double Langmuir probe. The influ- ence of gas pressure on the ion parameters was stronger than that of microwave power. With the increase in working pressure, the ion temperature decreased monotonously with a decreasing rate larger than that at higher pressure. The ion density first increased to a peak (42.3~ 101~ cm-3) at 1 Pa and then decreased. The ion temperature and density increased little with the increase in the microwave power from 400 W to 800 W, The plasma far away from the resonant point is found to be radially uniform.展开更多
Influence of multiple structural parameters on the performance of a gun launch system driven by highpressure reactive gases is important for structural design and performance adjustment.A coupled lumped parameter mode...Influence of multiple structural parameters on the performance of a gun launch system driven by highpressure reactive gases is important for structural design and performance adjustment.A coupled lumped parameter model was utilized to predict the propellant combustion,and a dynamic finite element method was applied to approximate the mechanical interactions between the projectile and the barrel.The combustion and the mechanical interactions were coupled through a user subroutine interface in ABAQUS.The correctness and the capability of the finite element approximations in capturing small structural changes were validated by comparing predicted resistance with experiments.Based on the coupled model,the influence of structural parameters of a medium-caliber gun on the system performance was investigated.In order to reduce the research costs,orthogonal tests were designed to investigate the comprehensive effects of the parameters.According to statistical analysis,the important order of the structural parameters on the launching process was obtained.The results indicate that the influence of the width of the rotating band stands out among the studied parameters in the gun.The work provides a method to investigate the influence of multiple parameters on system performance and gives guidance for controlling the system performance.展开更多
Pulsed dielectric barrier discharge is a promising technology for ozone generation and is drawing increasing interest. To overcome the drawback of experimental investigation, a kinetic model is applied to numerically ...Pulsed dielectric barrier discharge is a promising technology for ozone generation and is drawing increasing interest. To overcome the drawback of experimental investigation, a kinetic model is applied to numerically investigate the effect of gas parameters including inlet gas temperature, gas pressure, and gas flow rate on ozone generation using pulsed dielectric barrier discharge. The results show that ozone concentration and ozone yield increase with decreasing inlet gas temperature, gas pressure, and gas flow rate. The highest ozone concentration and ozone yield in oxygen are about 1.8 and 2.5 times higher than those in air, respectively. A very interesting phenomenon is observed: the peak ozone yield occurs at a lower ozone concentration when the inlet gas temperature and gas pressure are higher because of the increasing average gas temperature in the discharge gap as well as the decreasing reduced electric field and electron density in the microdischarge channel. Furthermore, the sensitivity and rate of production analysis based on the specific input energy (SIE) for the four most important species 03, O, O(1D), and O2(b1∑) are executed to quantitatively understand the effects of every reaction on them, and to determine the contribution of individual reactions to their net production or destruction rates. A reasonable increase in SIE is beneficial to ozone generation. However, excessively high S1E is not favorable for ozone production.展开更多
Simulation of the core plasma parameters of HCSB-DEMO (helium-cooled solid breeder, HCSB), by using a 1.5D plasma transport code, was carried out. The study includes investigations of operational scenarios, temperat...Simulation of the core plasma parameters of HCSB-DEMO (helium-cooled solid breeder, HCSB), by using a 1.5D plasma transport code, was carried out. The study includes investigations of operational scenarios, temperature and density profiles of both ions and electrons, fusion and radiated power, distribution of the safety factor, sensitivity analyses for some input parameters as well as a primary estimate of the divertor heating load. The results indicate that the following fusion reactor parameters can be properly set for HCSB-DEMO, namely major radius of 7.2 m, aspect ratio of 3.4, elongation of 1.85, triangularity of 0.45, plasma current of 14.8 MA, normalized beta of 4.4, toroidal field (TF) of 6.86 T, average electron density of 1.5× 10^20 m^-3, average electron temperature of 14.5 keV, fusion power of 2.55 GW, neutron wall loading of 2.3 MW.m^-2 and fusion multiplication factor of 35.展开更多
基金Supported by the National Natural Science Foundation of China(10272109)
文摘In order to understand the effect of hardening ductility parameters and softening ductility parameters of the concrete damage plastic model in LS-DYNA,a sensitivity and reliability analysis of these parameters through a convenient cube unit test was conducted. The results showed that the peak strength strain was independent of the hardening ductility parameter DH,but affected by AH,BH,and CH. The softening ductility was mainly related to the softening ductility parameter AS,but not affected by the damage ductility exponent BS. In case that the model with default parameters failed to match the AS-controlled damage softening phase,an optimized model with an AS correction was developed. The corrected model with the AS value of 2 matched well with the code model,and exhibited good feasibility in predicting the stress-strain curve of different grades of concrete. Moreover,the practicability of the corrected model was further validated by the conventional triaxial test. The simulated curve exhibited favorable consistence with the trial curve. Therefore,the model with parameter correction could provide a prospective reference for predicting the mechanical properties of concrete.
文摘Sensitivity analysis is one of the effective methods in the dynamic modification. The sensitivity of the modal parameters such as the natural frequencies and mode shapes in undamped free vibration of mechanical transmission system is analyzed in this paper.In particular,the sensitivities of the modal parameters to physical parameters of shaft system such as the inertia and stiffness are given.A calculation formula for dynamic modification is presented based on the analysis of modal parameter.With a mechanical transmission system as an example, the sensitivities of natural frequencies and modes shape are calculated and analyzed. Furthermore, the dynamic modification is also carried out and a good result is obtained.
文摘Nitrogen-rich heterocyclic energetic compounds(NRHECs)and their salts have witnessed widespread synthesis in recent years.The substantial energy-density content within these compounds can lead to potentially dangerous explosive reactions when subjected to external stimuli such as electrical discharge.Therefore,developing a reliable model for predicting their electrostatic discharge sensitivity(ESD)becomes imperative.This study proposes a novel and straightforward model based on the presence of specific groups(-NH_(2) or-NH-,-N=N^(+)-O^(-)and-NNO_(2),-ONO_(2) or-NO_(2))under certain conditions to assess the ESD of NRHECs and their salts,employing interpretable structural parameters.Utilizing a comprehensive dataset comprising 54 ESD measurements of NRHECs and their salts,divided into 49/5 training/test sets,the model achieves promising results.The Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Maximum Error for the training set are reported as 0.16 J,0.12 J,and 0.5 J,respectively.Notably,the ratios RMSE(training)/RMSE(test),MAE(training)/MAE(test),and Max Error(training)/Max Error(test)are all greater than 1.0,indicating the robust predictive capabilities of the model.The presented model demonstrates its efficacy in providing a reliable assessment of ESD for the targeted NRHECs and their salts,without the need for intricate computer codes or expert involvement.
基金supported by National Natural Science Foundation of China (No. 10875093)
文摘Ion parameters in electron cyclotron resonance (ECR) microwave plasma were measured by ion sensitive probe and were compared with the electron parameters obtained by double Langmuir probe. The effects of gas pressure and microwave power on the ion temperature and density were analyzed. The spatial distribution of the ion parameters was also investigated by the ion sensitive probes with a tunable radial depth installed on different probe windows along the chamber axis. Results showed that the ion density measured by the ion sensitive probe was in good agreement with the electron density measured by the double Langmuir probe. The influ- ence of gas pressure on the ion parameters was stronger than that of microwave power. With the increase in working pressure, the ion temperature decreased monotonously with a decreasing rate larger than that at higher pressure. The ion density first increased to a peak (42.3~ 101~ cm-3) at 1 Pa and then decreased. The ion temperature and density increased little with the increase in the microwave power from 400 W to 800 W, The plasma far away from the resonant point is found to be radially uniform.
基金the financial support from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYLX_0399)
文摘Influence of multiple structural parameters on the performance of a gun launch system driven by highpressure reactive gases is important for structural design and performance adjustment.A coupled lumped parameter model was utilized to predict the propellant combustion,and a dynamic finite element method was applied to approximate the mechanical interactions between the projectile and the barrel.The combustion and the mechanical interactions were coupled through a user subroutine interface in ABAQUS.The correctness and the capability of the finite element approximations in capturing small structural changes were validated by comparing predicted resistance with experiments.Based on the coupled model,the influence of structural parameters of a medium-caliber gun on the system performance was investigated.In order to reduce the research costs,orthogonal tests were designed to investigate the comprehensive effects of the parameters.According to statistical analysis,the important order of the structural parameters on the launching process was obtained.The results indicate that the influence of the width of the rotating band stands out among the studied parameters in the gun.The work provides a method to investigate the influence of multiple parameters on system performance and gives guidance for controlling the system performance.
基金supported by National Natural Science Foundation of China(Nos.51867018 and 51366012)Natural Science Foundation for Distinguished Young Scholars of Jiangxi Province,China(No.2018ACB21011)
文摘Pulsed dielectric barrier discharge is a promising technology for ozone generation and is drawing increasing interest. To overcome the drawback of experimental investigation, a kinetic model is applied to numerically investigate the effect of gas parameters including inlet gas temperature, gas pressure, and gas flow rate on ozone generation using pulsed dielectric barrier discharge. The results show that ozone concentration and ozone yield increase with decreasing inlet gas temperature, gas pressure, and gas flow rate. The highest ozone concentration and ozone yield in oxygen are about 1.8 and 2.5 times higher than those in air, respectively. A very interesting phenomenon is observed: the peak ozone yield occurs at a lower ozone concentration when the inlet gas temperature and gas pressure are higher because of the increasing average gas temperature in the discharge gap as well as the decreasing reduced electric field and electron density in the microdischarge channel. Furthermore, the sensitivity and rate of production analysis based on the specific input energy (SIE) for the four most important species 03, O, O(1D), and O2(b1∑) are executed to quantitatively understand the effects of every reaction on them, and to determine the contribution of individual reactions to their net production or destruction rates. A reasonable increase in SIE is beneficial to ozone generation. However, excessively high S1E is not favorable for ozone production.
文摘Simulation of the core plasma parameters of HCSB-DEMO (helium-cooled solid breeder, HCSB), by using a 1.5D plasma transport code, was carried out. The study includes investigations of operational scenarios, temperature and density profiles of both ions and electrons, fusion and radiated power, distribution of the safety factor, sensitivity analyses for some input parameters as well as a primary estimate of the divertor heating load. The results indicate that the following fusion reactor parameters can be properly set for HCSB-DEMO, namely major radius of 7.2 m, aspect ratio of 3.4, elongation of 1.85, triangularity of 0.45, plasma current of 14.8 MA, normalized beta of 4.4, toroidal field (TF) of 6.86 T, average electron density of 1.5× 10^20 m^-3, average electron temperature of 14.5 keV, fusion power of 2.55 GW, neutron wall loading of 2.3 MW.m^-2 and fusion multiplication factor of 35.